
WITUL 2004
Developing Reliable Systems with
SDL Design Patterns and Design Components

Christian Webel, Ingmar Fliege, Alexander Geraldy, Reinhard Gotzhein

Computer Science Department, University of Kaiserslautern
Postfach 3049, D-67653 Kaiserslautern, Germany

{webel,fliege,geraldy,gotzhein}@informatik.uni-kl.de

Abstract. SDL is a system design language that is being promoted for the development of reliable
systems. In this paper, we apply SDL to capture design solutions to well-known mechanisms found in
reliable systems - a watchdog and a heartbeat - for reuse. In particular, we present a methodology to
augment system reliability step-by-step, and define and apply generic design solutions for reliable systems
expressed as SDL design patterns and design components. These solutions can be integrated into an
existing system design, to protect against certain types of system failures. We illustrate the approach by
an application to a remote airship flight control over WLAN.

Keywords: distributed systems engineering, SDL, reuse, design pattern, reliability

1 Introduction
Reuse has been thoroughly studied in software engineering, and has led to the distinction of three
main reuse concepts: components, frameworks, and patterns. Components can be characterized
as self-contained ready-to-use building blocks, which are selected from a component library, and
composed. A framework is the skeleton of a system, to be adapted by the system developer. Pat-
terns describe generic solutions for recurring problems, to be customized for a particular context.

To identify and extract reuse artifacts, i.e. components, frameworks, and patterns, the structuring
of a software system plays a key role. Software systems may have a variety of structures, depend-
ing, for instance, on the type of system, the degree of abstraction, the development paradigm, and
the developers’ view points.

Design patterns are a well-known approach for the reuse of design decisions. In [1], a speciali-
zation of the design pattern concept for the development of communication protocols, called
SDL patterns, has been introduced. SDL patterns combine the traditional advantages of design
patterns - reduced development effort, quality improvement, and orthogonal documentation -
with the precision of a formal design language for pattern definition and pattern application.

In previous work, we have identified and applied the structuring unit micro protocol, i.e. a com-
munication protocol with a single (distributed) functionality and the required protocol collabora-
tion [2][3]. A functionality (e.g., flow control) is a single aspect of internal system behavior that
may be distributed among a set of system agents, with causality relationships between single
events. By collaboration, we refer to the interaction behavior of a distributed functionality. From
a reuse viewpoint, micro protocols classify as components, they may be selected from a micro

2

protocol library, and composed.

In this paper, we present an approach to augment reliability of an existing system by applying
SDL design patterns and using SDL design components (micro protocols). Of special interest are
distributed control systems in unreliable environments. Here, failures and interruptions of com-
munication links need to be detected and handled.

2 Reuse and Reliability
Reliability is needed if one part of a system (A) relies on the data input of another part in the sys-
tem (B). A system failure may result in a catastrophe for the application, which can only be avoid-
ed by moving the system into a safe state. In this case, B has to be monitored in order to detect
failure and to respond adequately. To provide a fail-safe or fail-operational state [15], a system
must have the ability to detect system failures, which in this case can be done by using a Watch-
dog. This is a special component monitoring the operation of a system. The observed system has
to send a periodic life-sign called Heartbeat to the Watchdog. If this life-sign fails to arrive at the
Watchdog within a certain period, the Watchdog assumes a system failure and therefore moves
the controlled system into a fail-safe or fail-operational state.

Therefore new functionality must be added to realize those new requirements. We have identified
two different solutions. The first solution introduces the new functionality by refining the given
components using existing design patterns WATCHDOG and HEARTBEAT, the second by adding
available reliability design components to the system.

Augmentation using SDL design patterns: The extension of the system using design patterns
is more flexible than using ready-to-use components. Figure 1 shows a generic application of the
methodology:

A component (comp A) of subsystem A communicates virtually with comp B of subsystem B.
Comp B provides necessary data for comp A and must therefore be monitored. Comp A is refined
by applying the WATCHDOG pattern and comp B is refined by applying the HEARTBEAT pattern.
There are several advantages of this approach: no change in the structure of the system is neces-
sary, it is fast to realize, it has the ability to detect system failures within subsystem B and within
the communication link. The disadvantage is that we can not detect failures within the component
containing the new watchdog functionality.

subsystem A

virtual communication

Watchdog

comp A

Figure 1: Using SDL design patterns

System

subsystem B

Heartbeat

comp B

specializes

3

Using SDL design components: The extension of the system with available design components
is necessary either if we don’t want to change an existing component or we are not able to, e.g.,
if the system contains 3rd party components. Figure 2 shows a generic application of the meth-
odology.

The design component Heartbeat generates a periodic alive signal and can easily be integrated
into an existing system. The component Watchdog contains the watchdog functionality and is
triggered by Heartbeat. The disadvantage of this solution is that the structure of the system must
be changed, and that it is only possible to monitor the communication link between both subsys-
tems.

Of course, both approaches can be combined, for example by using the design component Watch-
dog and the HEARTBEAT design pattern to avoid the addressed disadvantage. In the following,
both solutions will be presented in more detail.

3 SDL design patterns for reliable systems

3.1. SDL design patterns

Design patterns [5] are a well-known approach for the reuse of design decisions. In [1], another
specialization of the design pattern concept for the development of distributed systems and
communication protocols, called SDL design patterns, has been introduced. SDL design patterns
combine the traditional advantages of design patterns – reduced development effort, quality
improvements, and orthogonal documentation – with the precision of a formal design language
for pattern definition and pattern application.

The SDL design pattern approach [7,9] consists of a pattern-based design process, a notation for
the description of generic SDL fragments called PA-SDL (Pattern Annotated SDL), a template
and rules for the definition of SDL design patterns, and an SDL design pattern pool. The
approach has been applied successfully to the engineering and reengineering of several
distributed applications and communication protocols, including the SILICON case study [8], the
Internet Stream Protocol ST2+ [14], and a quality-of-service management and application
functionality for CAN (Controller Area Network) [6]. Applications in industry, e.g., in UMTS
Radio Network Controller call processing development, are in progress [10].

An SDL design pattern [5,7] is a reusable software artifact that represents a generic solution for
a recurring design problem with SDL [12] as design language. Over a period of more than 25

subsystem A

virtual communication

Watchdog

comp A

Figure 2: Using design components

System

subsystem B

Heartbeat

comp B

4

years, SDL (System Design Language) has matured from a simple graphical notation for
describing a set of asynchronously communicating finite state machines to a sophisticated
specification technique with graphical syntax, data type constructs, structuring mechanisms,
object-oriented features, support for reuse, companion notations, tool environments, and a formal
semantics. These language features and the availability of excellent commercial tool
environments are the primary reasons why SDL is one of the few FDTs that are widely used in
industry.

The following two paragraphs describe the notation used to specify design patterns.

3.2. Pattern Annotated UML

Pattern Annotated UML (PA-UML) extends the UML class diagrams and is used to describe the
structure of a design pattern.

3.3. Pattern Annotated SDL

Pattern Annotated SDL (PA-SDL) extends SDL with meta-symbols and is used to describe the
SDL fragments introduced by the patterns solution.

A class of the context in which the adapted pattern has to be embed-
ded.

New class that results from applying the pattern.

assoziation Assoziation that is still valid after applying the pattern. It can be a
new or an existing one.

class

class

class A

class B

Class B p-specializes class A, i.e class B describes a specialization
by applying the pattern.
This notation can also be used between diagrams

Extended Finite State Machine: The EFSM block describes a pro-
cess (type), a service (type) or a procedure. It can also be a speciali-
zation of an other EFSM.

EFSM Name
p-specializes Name

< ... >

+

A

signal

signal

Context: The parts of the SDL system that belong to the context are
dashed.

Generic trigger: This meta-symbol can be replaced with any input
trigger, e.g., input, priority input, continous signal, etc.

Scissor symbol: The scissor symbol indicates a point where a tran-
sition can be refined by the context.

Border symbol: Part of an SDL-system, which can be copied either
vertically or horizontally. The direction of replication is given by the
arrow. In the upper left corner you can specify the multiplicity.

5

3.4. The design pattern Watchdog

The Watchdog pattern realizes the safety functionality described in Section 2 and belongs to the
category of Interaction patterns. It describes a behaviour, that extends a given system.

The MSC in Figure 3 shows an ex-
ample where the described design
problem arises, which is solved by
the suggested solution:

In an automatic safety device on
trains (dead man’s control), an oper-
ator has to press a button periodically
within a prior well defined time in-
terval. When the operator desists
from pressing the button, the auto-
matic safety device assumes the op-
erator is dead and stops the train,
which leads the system to a fail-safe
state in order to prevent a catastro-
phe, e.g., a crash at an unmanned
crossing.
Figure 4 shows the graphical repre-
sentation of the structural aspects of
the pattern’s solution. Note that
Watchdog either refines a compo-
nent from the context or is added as
a new component to the structure:

• Trigger is a component of the context, which provides an alive signal periodically.
• Controller is a component where watchdog functionality is to be added. The WATCHDOG

pattern can either refine a component of the system or augment the system with a new
component.

• Controlled System is the part of the system which is moved into a safe state, when life-
sign fails to arrive.

The SDL-Description of the WATCHDOG pattern is shown in Figure 5. It describes the syntactical
part of the suggested design solution, which is adapted and composed when the pattern is applied.
The extended finite state machine Watchdog that optionally refines Controller describes the
watchdog functionality. The timer watchdogT is set for a duration of safeInterval when triggered
by a certain input from the context and restarted after a trigger (Figure 5 centre). The trigger

button automatic safety device train

e.g.
emergency cutout fail operational/safe

operator not present

running

active

initoperator present

MSC AutomaticSafetyDevice

emergency_brake

timer

buttonPressed

alive

timer

timer

buttonPressed

alive

Figure 3: MSC automatic safety device

Trigger ControlledSystemWatchdog

0..1

A

Controller

triggering controlling

Figure 4: Structure of the design solution - WATCHDOG

6

showing that the system is still alive can be one or more inputs or continuous signals. The dura-
tion safeInterval is the timeout interval after which the system changes to a fail-safe/fail-opera-
tional state. This is done by sending one or more control signals to the controlled system (Figure
5 right). Disabling the watchdog is also possible (Figure 5 left).

3.5. The design pattern Heartbeat

The watchdog functionality described in Section 2 assumes a periodic trigger in order to prevent
the watchdog from sending control signals. If the system does not provide a periodic communi-
cation with an adequate interval, the Heartbeat pattern can be applied. This augments the system
behaviour with the heartbeatSignal that is periodically sent.

The following figure shows the graphical representation of the structural aspects of the patterns
solution. Note that Heartbeat either refines a component from the context or is added as a new
component to the structure:

• Application is refined by Heartbeat and describes the system that has to be monitored.
• Watchdog is a component realizing watchdog functionality as described in Section 3.4.

EFSM Watchdog [p-specializes Controller]

*

enable or set watchdog again

nextState2

set (NOW+safeInterval,
watchdogT)

optional: disable watchdog

Timer watchdogT;
DCL safeInterval Duration := ... ;

+

C

timeout

control_n

watchdogT

nextState3

< ... >+

B

aliveTrigger

Figure 5: SDL design pattern WATCHDOG

states

nextState1

reset (watchdogT)

< ... >*

A

resetTrigger

Watchdog

Application

sending

Figure 6: Structure of the design solution - HEARTBEAT

Heartbeat

7

Figure 7 shows the SDL-description of the HEARTBEAT pattern. The EFSM Heartbeat describes
the heartbeat functionality. After the initialization or an input signal (Figure 7, left), the timer
heartbeatT is set to the duration of hbInterval and after the timeout a heartbeatSignal signal is
generated and propagated. Therefore Application is refined by adding transitions to start and stop
the heartbeat and one to handle the heartbeatT by sending the heartbeatSignal. The heartbeat-
Signal has to be consumed by a corresponding component which realizes watchdog functionality.
This signal can also be an existing signal in the system that can be used for a heartbeat.

It is possibe to define a combined WATCHDOG and HEARTBEAT pattern, but not mandatory.

4 Micro protocols for reliable systems

4.1. Micro protocols

In [2][3], we have introduced and applied a new type of communication component, called micro
protocol, i.e., a communication protocol with a single (distributed) protocol functionality and the
required protocol collaboration. Here, a protocol functionality is a single aspect of internal pro-
tocol entity behavior (operational structuring), e.g., flow control, loss control, corruption control.
It is realized by a particular protocol mechanism (e.g., sliding-window, sequence numbering,
checksum), and generally distributed among a set of protocol entities. A protocol collaboration
is a self-contained subset of synchronization and causality relationships of a set of protocol enti-
ties. Because a protocol functionality covers only one single aspect of protocol be-havior, a micro
protocol is not decomposable into smaller protocol units. A micro protocol is a special kind of a
design component.

generate heartbeat and set timer again

EFSM Heartbeat p-specializes Application

*

–

set (NOW+hbInterval,
heartbeatT)

enable heartbeat

Timer heartbeatT;
DCL hbInterval Duration := ... ;

heartbeatT

Figure 7: SDL design pattern HEARTBEAT

heartbeatSignal

state1

nextState1

< ... >+

A

enableHb

state2

nextState2

reset (heartbeatT)

< ... >+

A

disableHb

set (NOW+hbInterval,
heartbeatT)

disable heartbeat

8

Conceptually, we model protocol entities by asynchronously communicating extended Mealy
machines. Obviously, there are several ways to represent them in SDL, for instance, by specify-
ing SDL block types, SDL process types, SDL service types , or SDL procedures. Which one to
use depends on the composition of micro protocols, which in turn depends on the protocol that is
to be configured.

Micro protocol definitions are organized using SDL packages. An SDL package is a collection
of type definitions, and is used here to encapsulate SDL types belonging to the same micro pro-
tocol. This way, a micro protocol library can be expressed as a set of SDL packages, i.e., ready-
to-use components. Also, common parts of a set of micro protocols may be extracted into a pack-
age that is imported by each micro protocol definition. Alternatively, several related micro pro-
tocols may be grouped into one package.

In the context of reliability we have identified two different micro protocols.

4.2. The micro protocol Watchdog

The micro protocol Watch-
dog is encapsulated in one
single process type (Figure 8)
and may be specialized to
match the requirements of the
embedding context. A timer
watchdogT is used to monitor
receipt of an alive signal from
the context within a well-de-
fined interval. This safeInter-
val is initially defined, but
can be modified by redefin-
ing the virtual start transition.
When Watchdog does not re-
ceive an alive signal within
this given period, the timer
watchdogT triggers a transi-
tion to send a signal to the
context (controlled system).
Again, this signal must be
specified by redefining a vir-
tual transition. Optionally, a
signal may be send when the
watchdog assumes the ob-
served system to be dead and
an alive signal reappears.

In order to provide a periodic alive trigger, another micro protocol Heartbeat can be used.

process type Watchdog 1(1)
Timer watchdogT;
DCL
 safeInterval Duration;

OPTIONAL REFINE GATE:
extend gate with signal sigX

virtual

safeInterval := 3; redefine with correct
timeout interval

disabled

disabled

alive

set(NOW +
safeInterval, watchdogT)

enabled

enabled

alive

set(NOW +
safeInterval, watchdogT)

-

virtual

dead

dead

virtual alive

set(NOW +
safeInterval, watchdogT)

enabled

OPTIONAL REFINE STATE:
add new transition to disable watchdog
-> input sigX -> TASK: reset(watchdogT) [-> sigX]
->nextstate disabled

OPTIONAL REFINE:
add output of reanimate
signal sigZ

REFINE:
add output of fail-safe
signal sigY

REFINE GATE:
extend gate with signal sigY [sigX,sigZ]

wdIn
alive

wdOut

Figure 8: Micro protocol Watchdog

watchdogT

9

4.3. The micro protocol Heartbeat

The micro protocol Heartbeat is used
to provide a system with a periodic
sending of an alive signal. This signal
is used to trigger the micro protocol
Watchdog showing that the observed
system is still alive.

The behaviour is encapsulated in one
single process type shown in Figure 9.
The predefined heartbeatInterval in
which signals are sent should be adapt-
ed to fit the requirements of the watch-
dog observing this system. This is done
by refining the start transition.

5 System „Airship-Control“
The sample system is an excerpt from the airship system in [16]. It consists of a control applica-
tion to control the airship via an external controller. The control application is divided into two
parts, an airshipClient and an airshipServer. The airshipClient transmits the processed control
values generated by the external controller, the airshipServer receives the values and controls the
airship hardware. Because of the properties of both parts of the application, we have a classical
Client-Server-Architecture. Figure 10 shows an overview of the available architecture and the
structure of the client and the server. The applications are distributed and communicate via
WLAN.

process type Heartbeat 1(1)

TIMER heartbeatT;
DCL
 heartbeatInterval Duration := 1;

beating

/*optional
heartbeatInterval Duration := X */ heartbeatT

set(NOW +
heartbeatInterval, heartbeatT) alive

beating set(NOW +
heartbeatInterval, heartbeatT)

optional:
redefine start transition
to set needed heartbeat interval

-

g
alive

/*optional redefine*/
virtual

Figure 9: Micro protocol Heartbeat

Servo/

airshipServer

Wlan

application layer

Cam

middleware

hardware

airship controller

airshipClient

application layer

middleware

hardware

Laptop

GUI

Wlan
Motoren

Figure 10: Architecture and structure of the application

10
The SDL process in Figure 11
shows the simplified func-
tional behaviour of the air-
shipClient. When triggered
by a value from the environ-
ment (generated by an exter-
nal controller) with the
parameter id of type Start-
Stop, airshipClient sends a
signal startAirship to the air-
shipServer and enters state
enabled. This indicates the
begin of the flight. On the
next occurence of value with
the same id (StartStop), an
output stopAirship is generat-
ed and the state disabled is re-
entered. The variables val1,
val2 and val3 contain the cur-
rent values to control the air-
ship. These values are calculated from the data received by the external controller and propagated
at every change (newCtrlValues). This calculation is done by the procedure processValue.

Figure 12 shows the behav-
iour of airshipServer. On re-
ception of startAirship, it sets
an SDL timer t with a default
interval of 50 milliseconds
and enters state enabled. The
signal newCtrlValues updates
the current settings of the air-
ship and triggers the output of
the signals ctrlValue control-
ling the hardware. The timer t
is used to prevent the hard-
ware to fall back into initial
state. On input of the signal
stopAirship, the timer is
switched off and the new
state is disabled.

In the following we shortly
present the application of the
introduced design patterns to augment this system with reliability.

5.1. Application of the HEARTBEAT-Pattern

Figure 13 shows the result of applying the HEARTBEAT pattern to the process airshipClient. Two
transitions were extended as described in the pattern to enable and disable the heartbeat and a new
transition generates a heartbeat signal every hbInterval seconds.

process airshipClient 1(1)
DCL
 id ID,
 newVal Integer,
 val1 CtrlValue := 0,
 val2 CtrlValue := 0,
 val3 CtrlValue := 0;

processValue

/*start*/

disabled

disabled

value
(id, newVal)

id

startAirship
via airship

enabled -

enabled

value
(id, newVal)

id

processValue

newCtrlValues
(val1, val2,val3)
via airship

-

stopAirship
via airship

disabled

StartStop

else
else

StartStop

Figure 11: Process airshipClient

process airshipServer
Timer t := 0.05;

DCL
 val1 CtrlValue := 128,
 val2 CtrlValue := 0,
 val3 CtrlValue := 128;

disabled

disabled

startAirship

set(t)

enabled

enabled

newCtrlValues
(val1,val2,val3)

ctrlValue(val1)
via servo

ctrlValue(val2)
via motor1

ctrlValue(val3)
via motor2

SET(t)

-

t

ctrlValue(val1)
via servo

ctrlValue(val2)
via motor1

ctrlValue(val3)
via motor2

SET(t)

-

stopAirship

RESET(t)

disabled

1(1)

/*start*/

Figure 12: Process airshipServer

11
5.2. Application of the WATCHDOG-Pattern

The result of applying the WATCHDOG pattern to the process airshipServer is shown in Figure
14. We modified one existing transition and added two new transitions as described in the pattern
description. The signal stopAirship is used to disable the watchdog and therefore the existing
transition is extended by a new task resetting the watchdog timer watchdogT. The heartbeat alive
starts and resets the watchdog. After a timeout of the watchdog timer the fail-safe signals are sent

process airshipClient 1(1)
DCL
 id ID,
 newVal Integer,
 val1 CtrlValue := 0,
 val2 CtrlValue := 0,
 val3 CtrlValue := 0;

Timer heartbeatT;
DCL hbInterval Duration := 1;processValue

/*start*/ disabled enabled *

disabled value
(id, newVal)

value
(id, newVal)

heartbeatT

id id alive

processValue
startAirship
via airship

stopAirship
via airship

set(NOW +
hbInterval, heartbeatT)

newCtrlValues
(val1, val2,val3)
via airship

set(NOW +
hbInterval, heartbeatT) reset(heartbeatT) -

enabled - disabled -

StartStop

else
else

StartStop

Figure 13: Application of the HEARTBEAT pattern

process airshipServer 1(1)
TIMER
 t := 0.1;

DCL
 val1 CtrlValue := 128,
 val2 CtrlValue := 0,
 val3 CtrlValue := 128;

TIMER watchdogT;
DCL
 safeInterval Duration := 3;

DCL
 fail1 CtrlValue := 128,
 fail2 CtrlValue := 0,
 fail3 Ctrlvalue := 128;

disabled

disabled

startAirship

set(t)

running

running

newCtrlValues
(val1,val2,val3)

ctrlValue(val1)
via servo

ctrlValue(val2)
via motor1

ctrlValue(val3)
via motor2

SET(t)

-

 t

ctrlValue(val1)
via servo

ctrlValue(val2)
via motor1

ctrlValue(val3)
via motor2

SET(t)

-

stopAirship

RESET(t)

RESET(watchdogT)

disabled

*

alive

SET(NOW +
safeInterval, watchdogT);

-

watchdogT

ctrlValue(fail1)
via servo

ctrlValue(fail2)
via motor1

ctrlValue(fail3)
via motor2

val1 := fail1;
val2 := fail2;
val3 := fail3;

-

Figure 14: Application of the WATCHDOG pattern

12
to the airship hardware moving the airship into a safe state.

If it is not possible to use SDL design patterns, existing micro protocols can instead easily be in-
tegrated to your system.

5.3. Using design components

Starting point for the system design activity is a
requirements specification, resulting from a thor-
ough requirements analysis. According to these
requirements, the corresponding micro protocols
are selected from a micro protocol library and
glued together. This results in a self-contained
SDL design specification. Exisiting system de-
signs may be augmented by additional micro pro-
tocols when new requirements are demanded.

In this example, new reliability functionality is
added to an existing system. Therefore we select
the micro protocol Watchdog from the micro pro-
tocol library and refine this micro protocol in or-
der to integrate it into the system (Figure 15).
Therefore, we have to redefine the watchdogT
timeout transition to handle the failure of the mon-
itored system. To be able to stop the watchdog a
new transition is added.

There is no need to refine Heartbeat. We can sim-
ply integrate this component to our system.

6 Conclusions
In this paper, we have shown how to use the systematic approach of SDL design patterns and
design components to augment existing systems with reliability aspects. To illustrate this ap-
proach, we have given two examples of design patterns that can be used to specify and to docu-
ment the behavior of a heartbeat/watchdog-system. By selecting these patterns from the pool, and
by adapting them to the context, these patterns may support a wide variety of distributed systems.
The system designer profits from their genericity and the early application of these design pat-
terns.

Second, we have presented two ready-to-use micro protocols as design components that have
been used in the development of the remote airship flight control over WLAN. With parametri-
zation and the ability to use object oriented inheritance, this solution offers rapid development
profiting from advanced reuse.

We are using a micro protocol-based development process, which starts with a functionality anal-
ysis, followed by an abstract design using a micro protocol framework, and completed by a con-
crete SDL design. The design activities are supported by a micro protocol library, from which
micro protocols are selected and composed. This may pave the way to compositional testing.
Each of these components can be tested using well-proven techniques. However, when these

INHERITS Watchdog;

process type MyWatchdog 1(1)

enabled

redefined stopAirship

newCtrlValues
(128,0,128)

stopAirship
via wdOut

reset(

dead disabled

wdIn
stopAirship

wdOut newCtrlValues,stopAirship

Figure 15: Refinement of Watchdog

watchdogT

watchdogT)

13
components are put together, the resulting system must only be tested for composition faults,
which may increase the reliability of systems.

References
[1] B. Geppert, R. Gotzhein, F. Rößler: Configuring Communication Protocols Using SDL Patterns, In

Cavalli, A., Sar,a, Q., eds.: SDL’97 - Time For Testing, Proceedings of the 8th SDL Forum,
Amsterdam, Elsevier (1997) pp. 523-538

[2] R. Gotzhein, F. Khendek: Conception avec Micro-Protocoles, Colloque Francophone sur
l'Ingénierie des Protocoles, Montreal, Canada, May 27-30, 2002

[3] R. Gotzhein, F. Khendek, P. Schaible: Micro Protocol Design: The SNMP Case Study, in:
Telecommunications and beyond: The Broader Applicability of SDL and MSC, E. Sherratt (Ed.),
LNCS 2599, Springer, 2003, pp. 61-73

[4] Computer Networks Group: The SDL Pattern Pool, Online document, University of Kaiserslautern,
Kaiserslautern, Germany, 2002 (available on request)

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, Massachusetts, 1995

[6] B. Geppert, A. Kühlmeyer, F. Rößler, M. Schneider: SDL-Pattern based Development of a
Communication Subsystem for CAN, in : S. Budkowski, A. Cavalli, E. Najm (eds.), Formal
Description Techniques and Protocol Specification, Testing, adn Verification, Proceedings of
FORTE/PSTV’99, Kluwer Academic Publishers, Boston, 1998, pp. 197-212

[7] B. Geppert: The SDL-Pattern Approach - A Reuse-Driven SDL Methodology for Designing
Communication Software Systems, Ph.D. Thesis, University of Kaiserslautern, Germany, 2000

[8] R. Gotzhein, C. Peper, P. Schaible, J. Thees: SILICON - System Development for an Interactive LIght
CONtrol, URL: http://vs.informatik.uni-kl.de/activities/silicon/, 2001

[9] R. Gotzhein: Consolidating and Applying the SDL-Pattern Approach: A Detailed Case Study,
Information and Software Technology, Elsevier Sciences

[10] R. Grammes, R. Gotzhein, C. Mahr, P. Schaible, H. Schleiffer: Industrial Application of the SDL-
Pattern Approach in UMTS Call Processing Development - Experience and Quantitative
Assessment, 11th SDL Forum (SDL’2003), Stuttgart, Germany, July 1-4, 2003

[11] R. Grammes: Evaluation and Application of the SDL Pattern Approach, Master Thesis, Computer
Networks Group, University of Kaiserslautern, Kaiserslautern, Germany, February 2003

[12] ITU-T Recommendation Z.100 (11/99) - Specification and Description Language (SDL),
International Telecommunication Union (ITU), 2000

[13] ITU-T Recommendation Z.120 (11/99) - Message Sequence Chart (MSC), Intern.
Telecommunication Union (ITU), 2000

[14] F. Rößler, B. Geppert, P. Schaible: Re-Engineering of the Internet Stream Protocol ST2+ with
Formalized Design Patterns, Proceedings of the 5th International Conference on Software Reuse
(ICSR5), Victoria, Canada, 1998

[15] H. Kopetz: Real-Time Systems - Design Principles for Distributed Embedded Applications, Kluwer
Academic Publisher, 1997

[16] C. Webel: Development and Integration of QoS Micro Protocols for Controlling an Airship via
WLAN, Master Thesis, Computer Networks Group, University of Kaiserslautern, Kaiserslautern,
Germany, June 2004 (in german)

