
An Algebraic Semantics of Basic Message

Sequence Charts

S. Mauw and M. A. Reniers

Department of Mathematics and Computing Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Message Sequence Charts are a widely used technique for the visualization of the

communications between system components. We present a formal semantics of

Basic Message Sequence Charts, exploiting techniques from process algebra. This

semantics is based on the semantics of the full language as being proposed for

standardization in the International Telecommunication Union.

1. INTRODUCTION

Message Sequence Charts are a graphical language,

being standardized by the ITU{TS (the Telecommu-

nication Standardization section of the International

Telecommunication Union, the former CCITT), for the

description of the interactions between entities. ITU

recommendation Z.120 [9] contains the syntax and an

informal explanation of the semantics. The current goal

in the process of standardization is the de�nition of a

formal semantics of the language. The need for a formal

semantics became evident since even experts in the �eld

of Message Sequence Charts could not always agree on

the interpretation of speci�c features. Furthermore val-

idation of computer tools for Message Sequence Charts

only makes sense if an exact meaning is available. Fi-

nally a formal semantics will help to harmonize the use

of Message Sequence Charts.

There exist several attempts towards such a formal

semantics. We mention approaches based on automaton

theory [10], Petri net theory [5] and on process algebra

[4, 12]. None of these papers contain a formal semantics

of the complete language. Although all approaches have

their advantages and disadvantages, it has been decided

by the standardization committee to use process algebra

for the formal de�nition. The semantics in this paper

is based on a complete algebraic semantics of Message

Sequence Charts, which is the proposal for Z.120. We

will not present the complete semantics here, but we

restrict us to the core of the Message Sequence Charts

language, which we will call Basic Message Sequence

Charts.

This work is related to the formal semantics of In-

terworkings [12]. A di�erence is that we will consider

asynchronous communication whereas the theory of In-

terworkings only contains synchronous communication.

Furthermore, Message Sequence Charts and Interwork-

ings have a di�erent approach with respect to their tex-

tual representation. Interworkings are event oriented,

which means that an Interworking is a list of commu-

nications and other events, whereas Message Sequence

Charts are instance oriented. This means that a Mes-

sage Sequence Chart is described by giving the behavior

of every instance in separation.

The formal semantics presented is based on the al-

gebraic theory of process description ACP (Algebra of

CommunicatingProcesses) [2]. ACP is an algebraic the-

ory in many ways related to the algebraic process the-

ories CCS (Calculus of Communicating Systems) [11]

and CSP (Communicating Sequential Processes) [7].

This process algebra is a useful framework for the de-

scription of the formal semantics of Message Sequence

Charts since all features incorporated in the theory of

Message Sequence Charts are related to topics already

studied in process algebra such as the state operator and

the global renaming operator. Since we consider asyn-

chronous communication and since Message Sequence

Charts may be `empty', we use PA", i.e. ACP without

communication and with the empty process [2].

This paper is structured in the following way. First

we will introduce Basic Message Sequence Charts. After

that, we de�ne the algebraic theory we use as a frame-

work and the algebraic features speci�cally needed for

Basic Message Sequence Charts. Next we will de�ne the

semantic function which maps Basic Message Sequence

Charts into process terms and we will give an opera-

tional semantics. Finally we will prove a representation

theorem which shows the relation between the instance

oriented notation and an event oriented notation.

2. BASIC MESSAGE SEQUENCE CHARTS

2.1. Introduction

Message Sequence Charts provide a graphical notation

for the interaction between system components. Their

main application, in addition to SDL [8], is in the area

of telecommunication systems. Their use, however, is

The Computer Journal, Vol. 37, No. 4, 1994

2 S. Mauw and M. A. Reniers

not restricted to the SDL methodology or to telecom-

munication environments.

A Message Sequence Chart is not a description of

the complete behavior of a system, it merely expresses

one execution trace. A collection of Message Sequence

Charts may be used to give a more detailed speci�ca-

tion of a system. Message Sequence Charts and related

notations, such as Interworkings and Arrow Diagrams

have been applied in systems engineering for quite some

time. They are used in several phases of system de-

velopment, such as requirement speci�cation, interface

speci�cation, simulation, validation, test case speci�ca-

tion and documentation.

A Message Sequence Chart contains the description

of the asynchronous communication between instances.

The complete Message Sequence Chart language, in ad-

dition, has primitives for local actions, timers (set, reset

and time-out), process creation, process stop and core-

gions. Furthermore sub Message Sequence Charts and

conditions can be used to construct modular speci�ca-

tions.

For brevity, we restrict ourselves in this paper to

the core language of Message Sequence Charts, which

we will call Basic Message Sequence Charts. A Basic

Message Sequence Chart concentrates on communica-

tions and local actions only. These are the features

encountered in most languages comparable to Message

Sequence Charts.

2.2. Graphical notation

A Basic Message Sequence Chart contains a (partial)

description of the communication behavior of a num-

ber of instances. An instance is an abstract entity of

which one can observe (part of) the interaction with

other instances or with the environment. The �rst Basic

Message Sequence Chart in Figure 1 de�nes the com-

munication behavior between instances i1, i2, i3 and

i4. An instance is denoted by a vertical axis. The time

along each axis runs from top to bottom.

A communication between two instances is repre-

sented by an arrow which starts at the sending instance

and ends at the receiving instance. In Figure 1 we con-

sider the messages m1, m2, m3 and m4. Message m0

is sent to the environment. The behavior of the envi-

ronment is not speci�ed. For instance i2 we also de�ne

a local action a.

Although the activities along one single instance axis

are completely ordered, we will not assume a notion of

global time. The only dependencies between the tim-

ing of the instances come from the restriction that a

message must have been sent before it is received. In

Figure 1 this implies for example that message m3 is

received by i4 only after it has been sent by i3, and,

consequently, after the reception of m2 by i3. Thus m1

and m3 are ordered in time, while for m4 and m3 no

order is speci�ed. The execution of a local action is only

restricted by the ordering of events on its own instance.

i2 i3 i4i1

a

m0
m1

m2
m3

m4

msc example1

a
m4

m3

m2
m1

m0

i1 i2 i3 i4

msc example1

FIGURE 1. Example Basic Message Sequence Charts

The second Basic Message Sequence Chart in Figure 1

de�nes the same Basic Message Sequence Chart, but in

an alternative drawing.

msc overtaking

m1

m2

i1 i2

FIGURE 2. Basic Message Sequence Chart with overtaking

Since we have asynchronous communication, it would

even be possible to �rst send m3, then send and receive

m4, and �nally receive m3. Another consequence of this

mode of communication is that we allow overtaking of

messages, as expressed in Figure 2.

2.3. Textual notation

Although the application of Message Sequence Charts is

mainly focussed on the graphical notation, they have a

concrete textual syntax. This representation was origi-

nally intended for exchanging Message Sequence Charts

between computer tools only, but in this paper we will

use it for the de�nition of the semantics.

The textual representation of a Basic Message Se-

quence Chart is instance oriented. This means that a

Basic Message Sequence Chart is de�ned by specifying

the behavior of all instances. A message output is de-

noted by \out m1 to i2;" and a message input by \in

m1 from i1;". The Basic Message Sequence Charts of

Figure 1 have the following textual representation.

msc example1;

instance i1;

out m0 to env;

out m1 to i2;

in m4 from i2;

endinstance;

instance i2;

in m1 from i1;

out m2 to i3;

action a;

The Computer Journal, Vol. 37, No. 4, 1994

An Algebraic Semantics of Basic Message Sequence Charts 3

out m4 to i1;

endinstance;

instance i3;

in m2 from i2;

out m3 to i4;

endinstance;

instance i4;

in m3 from i3;

endinstance;

endmsc;

The grammar de�ning the syntax of textual Basic

Message Sequence Charts is given in Table 1. The non-

terminals <mscid>, <iid>, <mid> and <aid> represent

identi�ers. The symbol <> denotes the empty string.

The following identi�ers are reserved keywords: action,

endinstance, endmsc, env, from, in, instance, msc,

out and to.

TABLE 1. The concrete textual syntax of Basic Message Se-

quence Charts

<msc> ::= msc <mscid>;

<msc body> endmsc;

<msc body> ::= <> |

<inst def> <msc body>

<inst def> ::= instance <iid>;

<inst body> endinstance;

<inst body> ::= <> |

<event> <inst body>

<event> ::= in <mid> from <iid>; |

in <mid> from env; |

out <mid> to <iid>; |

out <mid> to env; |

action <aid>;

The language generated by a nonterminal X in the

grammar of Table 1 will be denoted by L(X).
We formulate two static requirements for Basic Mes-

sage Sequence Charts. The �rst is that an instance may

be declared only once. The second is that every message

identi�er occurs exactly once in an output action and

once in a matching input action, or in case of a com-

munication with the environment a message identi�er

occurs only once.

3. PROCESS ALGEBRA PA"

3.1. Introduction

The process algebra PA" is an algebraic theory for the

description of process behavior [2, 3]. Such an algebraic

theory is given by a signature de�ning the processes and

a set of equations de�ning the equality relation on these

processes. In Subsection 3.2. we will give the signature

�PA"
and the set of equations EPA"

will be given in

Subsection 3.3.

PA" is parameterized with the set of atomic actions.

In the following section we will instantiate this set of

atomic actions and extend the theory.

The signature of PA" speci�es the constant and func-

tion symbols that may be used in describing processes.

Also variables from some set V may be used in process

descriptions.

3.2. The signature of PA"

Before we turn to the signature of PA" we will de�ne the

terms associated to a signature � and a set of variables

V . A signature � is a set of constant and function

symbols. For every function symbol in the signature its

arity is speci�ed.

De�nition 3.1 Let � be a signature and let V be a
set of variables. Terms over signature � with variables
from V are de�ned inductively by

1. v 2 V is a term

2. if c 2 � is a constant symbol, then c is a term

3. if f 2 � is an n-ary (n � 1) function symbol and
t1; : : : ; tn are terms, then f(t1; : : : ; tn) is a term

The set of all terms over a signature � with variables

from V is denoted by T (�; V). A term t 2 T (�; V) is

called a closed term if t does not contain variables. The

set of all closed terms over a signature � is denoted by

T (�).

Now we are ready to turn to the signature �PA"
of

PA". The signature �PA"
consists of

1. the special constants � and "

2. the set of unspeci�ed constants A

3. the unary operator
p

4. the binary operators +, �, k and k
The special constant � denotes the process that has

stopped executing actions and cannot proceed. This

constant is called deadlock. The special constant " de-

notes the process that is only capable of terminating

successfully. It is called the empty process.

The elements of the set of unspeci�ed constants A are

called atomic actions. These are the smallest processes

in the description. This set is considered a parameter

of the theory. We will specify this set as soon as we

consider an application of the theory.

The binary operators + and � are called the alterna-
tive and sequential composition. The alternative compo-

sition of the processes x and y is the process that either

executes process x or y but not both. The sequential

composition of the processes x and y is the process that

�rst executes process x, and upon completion thereof

starts with the execution of process y.

The binary operator k is called the free merge. The
free merge of the processes x and y is the process that

executes the processes x and y in parallel. For a �-

nite set D = fd1; � � � ; dng, the notation k
d2DP (d) is

The Computer Journal, Vol. 37, No. 4, 1994

4 S. Mauw and M. A. Reniers

an abbreviation for P (d1) k � � � kP (dn). If D = ; then
k
d2D

P (d) = ". For the de�nition of the merge we use

two auxiliary operators. The termination operator
p

applied to a process x signals whether or not the pro-

cess x has an option to terminate immediately. The bi-

nary operator k is called the left merge. The left merge

of the processes x and y is the process that �rst has

to execute an atomic action from process x, and upon

completion thereof executes the remainder of process x

and process y in parallel.

3.3. The equations of PA"

The set of equations EPA"
of PA" speci�es which pro-

cesses are considered equal. An equation is of the form

t1 = t2, where t1; t2 2 T (�PA"
; V). For a 2 A [f�g

and x; y; z 2 V , the equations of PA" are given in the

Table 2.

TABLE 2. Axioms of PA"

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) � z = x � z + y � z A4

(x � y) � z = x � (y � z) A5

x+ � = x A6

� � x = � A7

x � " = x A8

" � x = x A9

x ky = xk y + yk x+p
(x) � p(y) TM1

"k x = � TM2

a � xk y = a � (x ky) TM3

(x+ y)k z = xk z + yk z TM4

p
(") = " TE1p
(a � x) = � TE2p
(x + y) =

p
(x) +

p
(y) TE3

Axioms A1{A9 are well known. The axioms TE1{

TE3 express that a process x has an option to terminate

immediately if
p
(x) = ", and that

p
(x) = � otherwise.

In itself the termination operator is not very interesting,

but in de�ning the free merge we need this operator to

express the case in which both processes x and y are

incapable of executing an atomic action. Axiom TM1

expresses that the free merge of the two processes x

and y is their interleaving. This is expressed in the

three summands. The �rst two state that x and y may

start executing. The third summand expresses that if

both x and y have an option to terminate, their merge

has this option too.

Lemma 3.1 For x; y; z 2 T (�PA"
) and a 2 A[f�g

1. x k " = x

2. x ky = y kx

3. (x ky) k z = x k (y k z)
4. ak x = ax

Proof See [2].

We can use this lemma to derive the following exam-

ple.

a k (b+ ") =

ak (b+ ") + (b+ ")k a+p
(a)
p
(b+ ") =

a(b + ") + bk a+ "k a + �(� + ") =

a(b + ") + ba+ � + � =

a(b + ") + ba

4. A PROCESS ALGEBRA FOR BASIC

MESSAGE SEQUENCE CHARTS

In this section we will extend the process algebra PA" to

a process algebra PABMSC . We do this by specifying

the set of atomic actions A and by introducing the aux-

iliary operator �M .

4.1. Specifying the atomic actions

In dealing with Basic Message Sequence Charts we

encounter a number of signi�cantly di�erent atomic

actions. These are, with their representations in

PABMSC :

1. the execution of an action aid by instance i:

action(i; aid)

2. the sending of a message m by instance s to instance

r: out(s; r;m)

3. the sending of a message m by instance s to the

environment: out(s; env;m)

4. the receiving of a message m by instance r from in-

stance s: in(s; r;m)

5. the receiving of a message m by instance r from the

environment: in(env; r;m)

In Table 3 the sets of atomic actions are given. We

use IID for L(<iid>), AID for L(<aid>) andMID for

L(<mid>).

TABLE 3. The atomic actions of PA
BMSC

Aa = faction(i; aid) j i 2 IID; aid 2 AIDg
Ao = fout(s; r;m) j s; r 2 IID;m 2MIDg
Ai = fin(s; r;m) j s; r 2 IID;m 2MIDg
Ae = fout(s; env;m) j s 2 IID;m 2MIDg

[fin(env; r;m) j r 2 IID;m 2MIDg
A = Aa [Ao [Ai [Ae

4.2. The state operator �M

A Basic Message Sequence Chart speci�es a (�nite)

number of instances that communicate by sending and

receiving messages. A message is divided into two parts:

The Computer Journal, Vol. 37, No. 4, 1994

An Algebraic Semantics of Basic Message Sequence Charts 5

a message output and a message input. The correspon-

dence between message outputs and message inputs has

to be de�ned uniquely by message name identi�cation.

A message input may not be executed before the cor-

responding message output has been executed. We in-

troduce an operator �M that enables only those exe-

cution paths that respect the above constraint. The

operator �M is an instance of the state operator as can

be found in [2]. This operator remembers all message

outputs that have been executed in a set M and only

allows a message input if its corresponding message out-

put is in that set.

For all M � Ao, x; y 2 V , a 2 A, i; j 2 L(<iid>),
and m 2 L(<mid>), we de�ne the state operator �M in

Table 4.

TABLE 4. Axioms for the state operator �
M

�M (") = " if M = ;
�M (") = � if M 6= ;
�M (�) = �

�M (a � x) = a � �M (x) if a 62 Ao [Ai

�M (out(i; j;m) � x) =

out(i; j;m) � �M[fout(i;j;m)g(x)

�M (in(i; j;m) � x) =

in(i; j;m) � �Mnfout(i;j;m)g(x) if out(i; j;m) 2M

�M (in(i; j;m) � x) = � if out(i; j;m) 62M

�M (x+ y) = �M (x) + �M (y)

Note that the state operator �M can be eliminated

from every closed PABMSC term. This means that

we have not introduced new processes. Furthermore

we have not introduced new identities between existing

processes, thus PABMSC is a conservative extension of

PA".

5. THE SEMANTICS OF BASIC MESSAGE

SEQUENCE CHARTS

5.1. Introduction

In this section we will de�ne a semantic function S that

associates to every Basic Message Sequence Chart in

textual format a closed PABMSC term. An example of

this construction is given in Subsection 5.3. Before we

give the de�nition of this semantic function we need to

explain some auxiliary functions. The powerset of a set

S is denoted by IP (S).

The function

Instances : L(<msc>)! IP (L(<inst def>))

that associates to a Basic Message Sequence Chart the

set containing all instance de�nitions of the instances

de�ned in the chart, is de�ned by

Instances(msc <mscid>; <msc body> endmsc;) =

Instancesbody (<msc body>)

where the function

Instancesbody : L(<msc body>)! IP (L(<inst def>))

is de�ned by

Instancesbody (<>) = ;
Instancesbody (<inst def><msc body>) =

f<inst def>g [Instancesbody(<msc body>)

Next we de�ne the following two functions

Name : L(<inst def>)! L(<iid>)
Body : L(<inst def>)! L(<inst body>)

These functions associate to an instance de�nition its

name and body.

Name(instance <iid>;

<inst body> endinstance;) = <iid>

Body(instance <iid>;

<inst body> endinstance;) = <inst body>

5.2. The semantic function

The general idea is that the semantics of a Basic Mes-

sage Sequence Chart is the free merge of the seman-

tics of its constituent instances. By this construction

we enable all interleavings of the message outputs and

message inputs. However, a message input can only

be performed after its corresponding message output.

In order to rule out all interleavings where a message

output is preceded by the corresponding message input

we use the state operator �M . We de�ne the function

S : L(<msc>)! T (�PABMSC
) by

S[[msc]] = �;

�
k idef 2Instances(msc)

Sinst[[idef]]
�

The semantic function Sinst : L(<inst def>) !
T (�PABMSC

) is de�ned to express the semantics of one

instance in separation. In the textual representation of

an instance the atomic actions are speci�ed in the or-

der they are to be executed, thus the semantics of an

instance de�nition is the sequential composition of its

actions.

Sinst[[idef]] = S
Name(idef)

body
[[Body(idef)]]

where for i 2 L(<iid>) the function
Si
body

: L(<inst body>)! T (�PABMSC
)

is de�ned by

Si
body

[[<>]] = "

Si
body

[[<event><inst body>]] =

Si
event

[[<event>]] � Si
body

[[<inst body>]]

and for every i 2 L(<iid>) the function
Si
event

: L(<event>)! T (�PABMSC
)

is de�ned by

The Computer Journal, Vol. 37, No. 4, 1994

6 S. Mauw and M. A. Reniers

Si
event

[[in <mid> from <iid>;]] =

in(<iid>; i; <mid>)

Si
event

[[in <mid> from env;]] = in(env; i; <mid>)

Si
event

[[out <mid> to <iid>;]] =

out(i; <iid>; <mid>)

Si
event

[[out <mid> to env;]] = out(i; env; <mid>)

Si
event

[[action <aid>;]] = action(i; <aid>)

Note that application of the state operator gives the

possibility that the semantics of a Basic Message Se-

quence Chart contains a deadlock. This can be inter-

preted as the fact that every execution trace contains

an input before the corresponding output.

5.3. An example

We consider the Basic Message Sequence Chart from

Figure 3. It consists of three instances which exchange

two messages.

a b c

k
l

msc example3

FIGURE 3. Example Basic Message Sequence Chart

msc example3;

instance a;

out k to b;

out l to c;

endinstance'

instance b;

in k from a;

endinstance;

instance c;

in l from a;

endinstance;

endmsc;

The interpretation of this Basic Message Sequence

Chart is that along instance a the ordering of the output

of messages k and l is �xed and furthermore that the

output of message k comes before the input of message k

and, likewise, that the output of message l comes before

the input of message l. These are the only restrictions

that apply.

When using the textual syntax, the Basic Message

Sequence Chart is represented by describing the behav-

ior of every instance in separation. After applying the

semantic function Sinst to these instances we obtain

Sinst[[a]]= out(a; b; k) � out(a; c; l)
Sinst[[b]] = in(a; b; k)

Sinst[[c]] = in(a; c; l)

The �rst step in deriving the expression which we aim

at is putting the instances a, b and c in parallel.

Sinst[[a]] kSinst[[b]] kSinst[[c]]
After some calculations, we arrive at the following nor-

malized expression.

out(a; b; k) �(in(a; b; k) � (out(a; c; l) � in(a; c; l)
+in(a; c; l) � out(a; c; l)
)

+out(a; c; l)�(in(a; b; k) � in(a; c; l)
+in(a; c; l) � in(a; b; k)
)

+in(a; c; l) � (in(a; b; k) � out(a; c; l)
+out(a; c; l) � in(a; b; k)
)

)

+in(a; b; k) � (out(a; b; k)� (in(a; c; l) � out(a; c; l)
+out(a; c; l) � in(a; c; l)
)

+in(a; c; l) � out(a; b; k) � out(a; c; l)
)

+in(a; c; l) � (out(a; b; k)� (in(a; b; k) � out(a; c; l)
+out(a; c; l) � in(a; b; k)
)

+in(a; b; k) � out(a; b; k) � out(a; c; l)
)

This expression clearly shows execution traces which

are not desirable, such as in(a; b; k) � out(a; b; k) �
in(a; c; l) � out(a; c; l). These traces can be removed by

applying the state operator �; to this expression. This

results in

out(a; b; k)�(in(a; b; k) � out(a; c; l) � in(a; c; l)
+out(a; c; l)� (in(a; b; k) � in(a; c; l)

+in(a; c; l) � in(a; b; k)
)

)

6. STRUCTURAL OPERATIONAL SEMAN-

TICS

In this section we de�ne a structural operational se-

mantics of Basic Message Sequence Charts in the style

of Plotkin [14]. For this purpose we de�ne action rela-

tions on closed PABMSC terms. Then we give a graph

model for the theory PABMSC .

6.1. Action relations for PABMSC

On the set of PABMSC terms we de�ne a predicate #�
T (�PABMSC

) and binary relations
a!� T (�PABMSC

)�
T (�PABMSC

) for every a 2 A. These predicates are de-

�ned by means of inference rules, which have the fol-

lowing form.
p1; : : : ; pn

q

This expression means that for every instantiation

of variables in p1; : : : ; pn; q we can conclude q from

The Computer Journal, Vol. 37, No. 4, 1994

An Algebraic Semantics of Basic Message Sequence Charts 7

p1; : : : ; pn. If q is a tautology, we omit p1; : : : ; pn and

the horizontal bar.

The intuitive idea of the predicate # is as follows: t#
denotes that t has an option to terminate immediately,

i.e. " is a summand of t. For x; y 2 T (�PABMSC
), and

M � Ao, the predicate # is de�ned in Table 5.

TABLE 5. The predicate #

" #

x # x # ; y # y #
(x+ y) # (x � y) # (x+ y) #

x # x # ; y # x #
(
p
(x)) # (x ky) # (�M (x)) #

The intuitive idea of the binary operator
a! is as

follows: t
a! s denotes that the process t can execute

the atomic action a and after this execution step the

resulting process is s. For x; x0; y; y0 2 T (�PABMSC
),

a 2 A, M � Ao, i; j 2 L(<iid>), and m 2 L(<mid>),
the binary relations

a! are de�ned in Table 6.

We will illustrate the use of these action relations

with an example. Consider the following expression.

�;(out(a; b; k) k in(a; b; k))

We have out(a; b; k)
out(a;b;k)! ", so we can derive

out(a; b; k) k in(a; b; k)out(a;b;k)! " k in(a; b; k). From this

we can conclude

�;(out(a; b; k) k in(a; b; k))out(a;b;k)!
�fout(a;b;k)g(" k in(a; b; k))

Next we have in(a; b; k)
in(a;b;k)! ", and we can derive

" k in(a; b; k)in(a;b;k)! " k ". Thus we have

�fout(a;b;k)g(" k in(a; b; k))in(a;b;k)! �;(" k ")
In order to see that this expression has the possibility

to terminate, we derive " # and thus (" k ") #, so
�;(" k ") #

Finally we conclude that the given process

�;(out(a; b; k) k in(a; b; k)) can �rst execute out(a; b; k),

then execute in(a; b; k) and �nally terminate. Note that

this is the only execution sequence that can be derived

from the inference rules.

6.2. Graph model for PABMSC

We will present a model for the theory PABMSC . This

model is a graph model, a set of process graphs modulo

bisimulation, that provides a visualization of the action

relations from the previous subsection.

A process graph is a �nite acyclic graph in which the

edges are labeled with an atomic action, and in which

every node may have a label #. This label # indicates

whether or not the state represented by the node has

an option to terminate immediately. In every process

graph there is one special node, the root node.

Two process graphs will be identi�ed if they are

bisimilar. Two graphs are bisimilar if there is a bisim-

ulation which relates the root nodes. A bisimulation is

a binary relation R, satisfying:

� if R(p; q) and p
a!p0, then there is a q0 such that q

a!q0

and R(p0; q0)

� if R(p; q) and q
a!q0, then there is a p0 such that p

a!p0

and R(p0; q0)

� if R(p; q) then p# if and only if q#.
Theorem 6.1 Bisimulation is a congruence for

the signature of PABMSC.

Proof The action rules �t into the syntactical for-

mat that is called the path format. As a consequence

bisimulation is a congruence for the function symbols

for which the action rules are de�ned. We refer to [1, 6]

for both the syntactical format and the congruence the-

orem.

Every operator in the signature of PABMSC can be

interpreted in the graph model. Without proof we

state that PABMSC is a complete axiomatization of the

graph model.

To every closed process expression we can associate a

process graph using the action relations for PABMSC.

We will give the process graph for the example of the

semantics in Figure 4.

in(a,c,l)

in(a,b,k)

in(a,b,k) out(a,c,l)

out(a,c,l)

in(a,c,l)

out(a,b,k)

in(a,b,k)

FIGURE 4. Process graph

7. A CHARACTERIZATION THEOREM

In this section we will relate our semantics for instance

oriented Message Sequence Charts to the event oriented

semantics from [4, 12]. To this end we will show that a

Basic Message Sequence Chart can be represented by a

single trace.

First we will de�ne three functions and a predicate

on processes. These are the alphabet function �, which

The Computer Journal, Vol. 37, No. 4, 1994

8 S. Mauw and M. A. Reniers

TABLE 6. The action relations
a

!

a
a! "

x
a! x0 y

a! y0 x
a! x0 x # ; y a! y0

x+ y
a! x0 x+ y

a! y0 x � y a! x0 � y x � y a! y0

x
a! x0 y

a! y0 x
a! x0

x ky a! x0 ky x k y a! x ky0 xk y a! x0 k y

a62Ao[Ai ; x
a! x0

�M (x)
a! �M (x0)

x
out(i;j;m)�! x0

�M (x)
out(i;j;m)�! �M[fout(i;j;m)g(x0)

out(i;j;m)2M ; x
in(i;j;m)�! x0

�M (x)
in(i;j;m)�! �Mnfout(i;j;m)g(x0)

determines the atomic actions involved in a process, the

function "I (for I � A) which renames the atomic ac-

tions that are in the set I into " and the function tr

which determines the collection of completed traces of

a process. The predicate df determines whether a pro-

cess is free of deadlocks. For x and y arbitrary processes

and a 2 A, we give the axioms for those functions in

Table 7. Note that the predicate x 6= � can be de�ned

easily.

TABLE 7. Axioms for �, "
I
, tr, and df

�(") = ;
�(�) = ;
�(a � x) = fag [�(x)

�(x+ y) = �(x) [�(y)

"I(") = "

"I(�) = �

"I(a � x) = a � "I (x) if a 62 I

"I(a � x) = "I (x) if a 2 I

"I(x+ y) = "I(x) + "I(y)

tr(") = f"g
tr(�) = f�g
tr(a � x) = fa � t j t 2 tr(x)g
tr(x+ y) = tr(x) [tr(y) if x 6= � ^ y 6= �

df(")

:df(�)
df(a � x) = df(x)

df(x+ y) = df(x) ^ df(y) if x 6= � ^ y 6= �

First observe the following general properties.

Lemma 7.1 For x; y 2 T (�PABMSC
), M � Ao and

I � A

1. df(y) ^�(y) � I) "I (x ky) = "I (x)

2. �(x) \ I = ;) "I (x) = x

3. 8t2tr(x) "I (t) 2 tr("I(x))

4. df(�M (x))) tr(�M (x)) � tr(x)

Proof For 2, 3 and 4 we use induction on the struc-

ture ", a � x, x + y, whereas for 1 we use induction on

the structure ", �k2K ak � xk, �k2K ak � xk + ".

Lemma 7.2 For i 2 L(<inst def>)

tr(Sinst[[i]]) = fSinst[[i]]g
Proof This follows immediately from the construc-

tion of the semantic function.

In the following lemmas and theorems we will use,

for i 2 L(<inst def>), �(i) as an abbreviation of

�(Sinst[[i]]) and Inst for Instances(msc) where msc is

clear from the context. First we consider traces from

k
j2InstSinst[[j]] which do not meet the restriction on

the order of inputs and corresponding outputs. Using

such a trace we can reconstruct the behavior of every

single instance and, therefore, we can reconstruct the

complete Basic Message Sequence Chart as described in

Theorem 7.4. Theorem 7.5 states that this also holds for

the restricted traces from S[[msc]]. So a Basic Message

Sequence Chart can be represented either by a collec-

tion of instances (the instance oriented approach) or by

a single trace (the event oriented approach).

Lemma 7.3 For msc 2 L(<msc>) and i 2 Inst

8
t2tr

� k
j2Inst

Sinst [[j]]
� "An�(i)(t) = Sinst[[i]]

Proof Let t 2 tr

�
k
j2Inst

Sinst[[j]]
�
.

Then by applying Lemma 7.1.3 we have: "An�(i)(t) 2
tr

�
"An�(i)

�
k
j2Inst

Sinst[[j]]
��

.

We calculate

"An�(i)

�
k
j2Inst Sinst[[j]]

�

= f Lemma 7.1.1 g
"An�(i)(Sinst[[i]])

= f Lemma 7.1.2 g
Sinst[[i]]

So, from Lemma 7.2, we may conclude that "An�(i)(t) =

Sinst[[i]].

The Computer Journal, Vol. 37, No. 4, 1994

An Algebraic Semantics of Basic Message Sequence Charts 9

Theorem 7.4 For msc 2 L(<msc>)
8
t2tr

�k
i2Inst

Sinst [[i]]
� S[[msc]] = �;

� k
i2Inst

"An�(i)(t)
�

Proof This follows from Lemma 7.3 and the de�ni-

tion of the semantic function S.

Theorem 7.5 For msc 2 L(<msc>) such that
df(S[[msc]])

8t2tr(S[[msc]]) S[[msc]] = �;
� k

i2Inst
"An�(i)(t)

�

Proof This theorem follows immediately from

Lemma 7.1.4 and Theorem 7.4.

Theorem 7.5 expresses that, in principle, one could

choose an event oriented textual representation for Ba-

sic Message Sequence Charts. The Basic Message Se-

quence Chart from Figure 3 may look like

msc example3;

out k from a to b;

out l from a to c;

in l from a to c;

in k from a to b;

endmsc;

8. CONCLUSION

The de�nition of a formal semantics of Basic Message

Sequence Charts based on process algebra as presented

in this paper has turned out to be a very natural and

successful method. We used the instance oriented syn-

tax to derive a compositional semantics and indicated

that this yields a semantics which is equivalent to the

approach based on sequencing for an event oriented syn-

tax [4, 12].

The development of the semantics for the complete

Message Sequence Charts language follows the same

line, applying more elaborate constructs from process

algebra for features such as sub Message Sequence

Charts and process creation.

The algebraic approach towards the de�nition of the

formal semantics of Message Sequence Charts enables

the use of term{rewriting systems for the rapid proto-

typing of speci�cations [13].

ACKNOWLEDGEMENTS

We would like to thank Jos Baeten, Jan Bergstra,

Ekkart Rudolph and Chris Verhoef for their useful com-

ments and suggestions for improvements.

REFERENCES

[1] J. C. M. Baeten and C. Verhoef. A congruence theorem
for structured operational semantics with predicates. In
E. Best, ed., CONCUR'93, Lecture Notes in Computer
Science 715, Springer, Berlin, 1993.

[2] J. C. M. Baeten and W. P. Weijland. Process Algebra.
Cambridge Tracts in Theoretical Computer Science 18.
Cambridge University Press, Cambridge, 1990.

[3] J. A. Bergstra and J. W. Klop. Process algebra for
synchronous communication. Information & Control,
60:109{137, 1984.

[4] J. de Man. Towards a formal semantics of Message
Sequence Charts. In O. F�rgemand and A. Sarma, eds,
SDL'93 Using Objects, Proceedings of the Sixth SDL
Forum, Darmstadt, 1993. Elsevier Science Publishers,
Amsterdam.

[5] J. Grabowski, P. Graubmann and E. Rudolph. Towards
a petri net based semantics de�nition for Message Se-
quence Charts. In O. F�rgemand and A. Sarma, eds,
SDL'93 Using Objects, Proceedings of the Sixth SDL
Forum, Darmstadt, 1993. Elsevier Science Publishers,
Amsterdam.

[6] J. F. Groote and F. W. Vaandrager. Structured op-
erational semantics and bisimulation as a congruence.
Information and Computation, 100:202{260, 1992.

[7] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cli�s, NJ, 1985.

[8] ITU-T. ITU-T Recommendation Z.100: Speci�cation

and Description Language (SDL). ITU-T, Geneva,
1993.

[9] ITU-T. ITU-T Recommendation Z.120: Message Se-

quence Chart (MSC). ITU-T, Geneva, 1993.
[10] P. B. Ladkin and S. Leue. What do Message Sequence

Charts mean? In R. L. Tenney, P. D. Amer and M.
Uyar, eds, Formal Description Techniques, VI, IFIP
Transactions C, Proceedings of the Sixth International
Conference on Formal Description Techniques. North-
Holland, Amsterdam, 1993.

[11] R. Milner. A Calculus of Communicating Systems. Lec-
ture Notes in Computer Science 92. Springer, Berlin,
1980.

[12] S. Mauw, M. van Wijk and T. Winter. A formal seman-
tics of synchronous Interworkings. In O. F�rgemand
and A. Sarma, eds, SDL'93 Using Objects, Proceedings
of the Sixth SDL Forum, Darmstadt, 1993. Elsevier Sci-
ence Publishers, Amsterdam.

[13] S. Mauw and T. Winter. A prototype toolset for
Interworkings. Philips Telecommunication Review,
51(3):41{45, December 1993.

[14] G. D. Plotkin. An operational semantics for CSP. In
Proceedings of the Conference on the Formal Descrip-

tion of Programming Concepts, volume 2, Garmisch,
1983.

The Computer Journal, Vol. 37, No. 4, 1994

