
Timed Test Cases Generation based on MSC-2000 Test
Purposes

Abdeslam En-Nouaary and Gang Liu

Department of Electrical and Computer Engineering, Concordia University
1455 de Maisonneuve W., Montréal, Québec H3G 1M8, Canada

{ennouaar,g_liu}@ece.concordia.ca

Abstract

This paper addresses timed test cases generation using test purposes given as
Message Sequence Charts (MSCs). A test purpose is a partial behaviour of the
system under test. Test purposes are very important in testing because they
help reduce the number of test cases while guaranteeing acceptable faults
coverage. The adoption of MSCs as a model for test purposes is very important
because they have a graphical representation that can be used to express
clearly what the user wants to test. The approach presented in this paper is
fundamentally based on timed input output automata (TIOA) theory. An
example is used to illustrate the concepts and the steps of the approach
presented in this paper.

1. Introduction

Testing is one of the most important and crucial activities of software life
cycles. The objective of testing is to make sure that the functionalities of a
system are correctly implemented. This is generally done in three steps. First of
all, test cases are generated from the specification of the system and/or test
purposes. Then, the generated test cases are applied to the implementation of
the system under test (IUT for short) and the reactions of IUT are observed.
Finally, the test results are analyzed and a verdict is concluded: if the outputs of
each test case match those expected (i.e., derived from the specification) the
implementation is said to be conform to the specification; otherwise, the
implementation is faulty and the diagnosis process is started to locate and fix
the fault.

Over the past three decades, a lot of works have been done in testing.
Particularly, many algorithms have been developed to generate test cases from
different formal models such as (extended) finite states machines.
Unfortunately, these works cannot be used to test timed specifications because
the models on which they are based lack time expressiveness. So, many
researchers, over the last past decade, have been investigating timed testing
with different backgrounds and different formal timed models (see for instance
[2, 4, 5, 6, 12, 13, 14, 15, 16, 17]). Although the proposed methodologies are
successful in testing timed specification with different faults coverage, most of
them suffer from the state explosion problem and an exorbitant number of test

cases. That is one of the reasons why the search for a new approach for timed
testing is still needed.

This paper addresses timed test cases generation using test purposes given as
Message Sequence Charts (MSCs). A test purpose is a partial behaviour of the
system under test [2, 8, 13, 15]. Test purposes are very important in testing
because they help reduce the number of test cases while guaranteeing
acceptable faults coverage. The adoption of MSCs as a model for test purposes
is very important because MSCs have a graphical representation that helps a
user clearly express what he/she wants to test. Moreover, MSCs are widely
used in the telecommunication industry and so one can easily see the
application that the proposed approach might have. In this paper, we will
introduce a methodology for timed test cases generation based on MSC-2000.
It should be recalled that MSC-2000 provides designers and testers with
constructs to express timing behaviour by not only timers but also time
constraints between any pair of events appearing on MSC diagrams [1, 4, 7].

The rest of this paper is organized as follows. Section 2 discusses the issues to
be investigated in timed testing. Section 3 presents our approach for timed test
cases generation. Section 4 concludes the paper and presents future work.

2. Issues to be investigated in timed testing

The main problem faced when testing against timed specification is the
existence of time constraints in the specification of the system to be tested. The
generated test cases may not be executable due to the existence of the clock
conditions associated with the transitions in the specification. Moreover, test
execution consists of not only observing the outputs and verifying the target
states of the transitions but also checking that the implementation of the system
under test does not accept the inputs and does not respond with the outputs
outside the interval fixed in the specification of the system. This is difficult
because the time is not under the direct control of the tester. Moreover, this
difficulty varies with the timed model used and the time semantics adopted. For
example, discrete timed models are much easier to test than dense/continuous
timed models. Indeed, discrete time models can easily be transformed into a
FSM by introducing a special time event “tick” that represents the progression
of time from t to t+1. However, under dense time models the time values are
real numbers and hence infinite.

In general, a certain number of issues should be investigated when testing
timed specifications. The first issue is the executability of test cases. This
means that the time constraint of each transition traversed by a test case should
be satisfied by the values of clocks during the execution of the test case. In this
paper, the specification is modeled as a TIOA and test cases are generated not
directly from TIOA but from an automaton that represents the executions of

TIOA. Such an automaton, called the grid automaton, is automatically
constructed by the tool implementing our approach.

The second issue to be considered is the fault model. It refers to the set of
potential faults that can be encountered in an implementation of a timed
specification. The fault model is much related to the specification model used
to describe the behaviour of the system under test. In the case of timed systems,
the fault model consists of four types of faults: the output faults, the transfer
faults, the time constraints widening faults, and the time constraints narrowing
faults. The fault model is very important because it helps in developing
efficient methods. In this paper, we will not talk in more details about fault
models. However, the interested reader is invited to consult the already
published works on timed fault models [18].

The third issue to investigate is the fault coverage of test cases. This refers to
the power of a test cases generation method to detect the potential faults in the
implementation of the system under test (i.e., the faults listed in the fault
model). Therefore, test cases generation methods can be compared based on
their fault coverage. A method A is said more efficient than a method B if A
detects more faults than B. However, for a more accurate comparison other
criteria, such as the length of test suite, should be taken into account. For the
sake of space, a comparison between existing timed test cases generation
methods will be left to a future paper.

The fourth issue is the conformance relation between the implementation and
its specification. The conformance relation is a very important aspect in testing
because it gives the meaning of the conformance between an implementation
and its specification. Indeed, a conformance relation is a mathematical relation
between the implementation and its specification. To be able to formalize such
a relation, we always assume that both the specification and the implementation
are described in the same formal model. This paper is based on test purpose, so
the idea is to check whether or not the IUT includes the behaviour expressed by
the test purpose. In other words, the formalization of conformance relation is
not the main concern in this paper. Notice that the infinity/density of time
domain makes it difficult to choose feasible conformance relation.

Now that we presented the problems related to timed testing, we will introduce
in the next section our approach for timed test cases generation. Such an
approach solves the executability problem and guarantees acceptable fault
coverage.

3. Our approach for Timed Test Cases Generation

 Our approach for timed test cases generation is fundamentally based on
TIOA and MSC. TIOA is used to describe the specification of the system while
MSC2000 is used to specify the test purpose of the user. MSC2000 provides

the user with constructs to specify the timing behaviour of a real-time system
by not only timers but also with time constraints between any pair of events.
The formal definition of TIOA and test purpose can be stated as follows.

Definition 1: Timed Input Output Automaton

A Timed Input Output Automaton (TIOA) A is a tuple (IA, OA, LA, l0

_A, CA, TA)
[2, 9, 14], where:

− IA is a finite set of input actions. Each input action begins with “?”.
− OA is a finite set of output actions. Each output action begins with “!”.
− LA is a finite set of location. The term “location” is chosen instead of the
term “state” because the latter is used to define the operational semantics of
the TIOA.
− l0

_A ∈ LA is the initial location.
− CA is a finite set of synchronous clocks set to zero in l0

A. We assume that
the time is dense, which means that the clocks values are real numbers.
− TA is the set of transitions. Each transition consists of a source location,
an input or an output action, a clock guard that should hold in order to execute
the transition, a set of clocks to be reset when the transition is executed, and a
destination location. We assume that the transitions are instantaneous.

Figure 1 is an example of TIOA that describes the behaviour of a simple
multimedia system. The system receives an image and its sound within two
time-units, sends an acknowledgment in less than five time-units after the
reception of the image, and then sends the message reset and starts waiting for
another image. If the time constraints are not satisfied, the system issues the
message error and goes back to its initial state. The TIOA that describes the
system has four locations l0 (the initial location), l1, l2, and l3, six transitions
and two clocks x and y. The transition from l0 to l1, denoted by

, is executed when the system receives the message
image and the value of clock x is less than or equal to 2. When the transition is
fired, the clocks x and y are set to 0.

10 0:,0:,2,? ll yxximage ⎯⎯⎯⎯⎯⎯⎯ ==<= →

Figure 1: Specification of Multimedia System

Definition 2: Test Purpose
A Test purpose is a description of the property to be tested by a user. Such a
property represents a sequence of interactions among the components of the
system and with their environment as well as the time constraints on these
interactions.

An example of test purpose in MSC 2000 is given in Figure 2. Here, the user is
interested in checking if the implementation of the multimedia system can
accept an image followed by its sound within one time-unit, and respond with
an acknowledgment in less than two time-units after the reception of the sound.
As one can easily see from this example of test purpose, the user is not
interested in verifying all the functionalities of the system (i.e., the whole
specification) but only a subset of them. The functionalities wanted by the user
can be, for instance, the most critical functions of the system or the most
frequently executed parts of the system.

Figure 2: Test Purpose of Multimedia System

It should be mentioned that we use only a subset of MSC-2000 for the
expression of test purposes. Indeed, we limited ourselves to Basic MSC
(BMSC). Moreover, the BMSC used consists of two instances only (one for the
IUT and the other one for the environment), and contains neither co-regions
nor inline expressions. For time constraints, our approach takes into
consideration the use of timers and the relative and absolute time intervals on
the occurrence of events in test purpose. BMSC with more than two instances
as well as HMSC and inline expressions are left to future work.

In order to generate test cases systematically from test purposes, we have to
convert the MSCs of those test purposes into the model of the specification
(i.e., TIOA). Such a conversion is done as follows. Each message received by
the IUT in MSC is translated to an input action in TIOA, and each message
sent by the IUT is translated to an output action; the state between each pair of
exchanged messages is identified as the location in TIOA. The timer events and
the time constraints in MSC can be described by the replacing clocks of TIOA.
A critical problem of the resulting TIOA is that the number of clocks could be
unnecessary larger than what we need. Therefore a process is needed to
minimize the number of clocks for the resulting TIOA [3].

The TIOA model introduced above is an abstract model because it doesn't
explicit all the possible executions of the described system. Therefore, test
cases cannot be generated directly from TIOA specification. We need to use
the executions of TIOA for such purpose. Such executions, called the
operational semantics, can informally be stated as follows. The TIOA starts at
its initial location with all clocks initialized to zero. Then, the values of clocks
increase synchronously and measure the amount of time elapsed since the last
initialization. At any time, the TIOA can make a transition if the values of
clocks in the current location satisfy the clock guard of the transition. In this
case, all the clocks in the reset set of the transition is initialized to zero and the
TIOA moves to the destination location of the transition. The formalization of
the operational semantics of TIOA is based on the concepts of state and clock
valuation. A clock valuation v is a mapping from the set of clocks of TIOA to
the set of real numbers (i.e., each clock is assigned a value, which is a real
number). However, a state is couple (l, v) where l is a location in TIOA and v
is a clock valuation.

Since we assume dense time model, one can easily see that the number of
states of a TIOA is infinite. This is mainly due to the infinity of delay
transitions upon the progression of time. Hence, it is impossible to generate
test cases directly from the semantics of TIOA. To address the problem, we
will not base our test cases generation method on the whole operational
semantics of TIOA but on a subset of it, called Grid Automaton (GA) [2, 5,
10, 14]. The GA limits the delay transitions to a fixed time delay g, which is
called the time granularity. The construction of GA is called the sampling of

TIOA. The definition of GA is as follows.

Definition 3: Grid Automaton
Let A = (IA, OA, LA, l0

A, CA, TA) be a TIOA. The Grid Automaton (GA) of A is a
finite input output automaton GA = (IGA, OGA, SGA, s0

GA, TGA), where:
− IGA = IA ∪ {g}, where g is a special time delay (g is a rational number).
− OGA = OA.
− SGA is finite set of system states. Each state is a pair (l, v), where l∈ LA
and v is a clock valuation in which the value of each clock is a multiple of g.
− s0

GA is the initial state that consists of the initial location , l0
A with all

clocks values set to 0.
− TGA is a finite set of Transitions.

Each transition consists of a source state, an action (input, output, or time delay
g), and a destination state. There are two types of transitions in GA: the delay
transitions on time delay g and the explicit transitions on input and output
actions. Each state in GA has an outgoing delay transition on time delay g.
However, a state (l, v) has an outgoing explicit transition on input or output
action a if and only if there is a transition in A and v satisfies the
clock guard G. After the execution of a delay transition on g, the value of each
clock is incremented with g time-units. However, after the execution of an
explicit transition the value of each clock in λ (i.e., the set of clocks to be reset
by the transition) in A is zero.

',,}!{?, ll Ga ⎯⎯⎯ →⎯ λ

Figure 3 shows the partial GA of the TIOA in Figure 1 sampled with a
granularity g = 0.5.

Figure 3: Grid Automaton of Specification

When testing is based on test purpose, it’s likely that the property to be
checked (i.e., the test purpose) is not a subset of the specification or is
inconsistent with the specification. For this reason, we have to validate the test
purpose against the specification, which is always assumed to be correct. To
validate the test purpose against the specification of the system under test, we
use a special composition of the test purpose and the specification. Such a
composition is called synchronous product and is formally defined as follows.

Definition 4: Synchronous Product of Two TIOAs
Let and be two TIOAs.
The synchronous product of S and

),,,,,(0
SSSSSS TClLOIS =),,,,,(0

TTTTTT TClLOIT =
T is a special composition

 of S and T such that [15]:),,,,,(0
SPSPSPSPSPSP TClLOISP =

• ISP = IS ∪ IT and OSP = OS ∪ OT.
• LSP ⊆ LS × LT.
• l0

S = (l0
S , l0

T).
• CSP = CS ∪ CT.
• LSP and TSP are the smallest relations defined by the following two rules:

− Suppose SPTSSP Llll ∈=),(, , SSTTSS LlLlLl ∈∈∈ ',, then

SPTSSP

SS
Ga

S

TT

SS

Llll

Tll

OIa
OIa

∈=⇒
⎪
⎭

⎪
⎬

⎫

∈⎯⎯⎯ →⎯

∪∉
∪∈

),(''

'1,1,}!{?, λ

and SPSP
11Ga

SP Tll ∈⎯⎯⎯ →⎯ λ ',,}!{?,

− Suppose , SPTSSP Llll ∈=),(TTSSTTSS LlLlLlLl ∈∈∈∈ '' ,,, , then

SPTSSP

TT
Ga

T

SS
Ga

S

TT

SS

Llll

Tll

Tll

OIa
OIa

∈=⇒

⎪
⎪

⎭

⎪
⎪

⎬

⎫

∈⎯⎯⎯⎯ →⎯

∈⎯⎯⎯ →⎯

∪∈
∪∈

),('''

'2,2,}!{?,

'1,1,}!{?,

λ

λ and

 SPSP
212G1Ga

SP Tll ∈⎯⎯⎯⎯⎯⎯ →⎯ λλ ',&,}!{?, U

 As an example, Figure 4 is the synchronous product of test purpose and
specification TIOAs for the multimedia system of Figure 1 and Figure 2.

Figure 4: Synchronous product of specification and test purpose.

In addition to the synchronous product of two TIOAs, we also define the
synchronization between two GAs as follows.

Definition 5: Synchronous Product of Two GAs
Let and be two TIOAs. The
synchronous product of S and

),,,,(0
SSSSS TsSOIS =),,,,(0

TTTTT TsSOIT =
T is a special composition

 of S and T such that:),,,,(0
SPSPSPSPSP TsSOISP =

• ISP = IS ∪ IT and OSP = OS ∪ OT.
• LSP ⊆ LS × LT.
• l0

S = (l0
S , l0

T).
• CSP = CS ∪ CT.
• LSP and TSP are the smallest relations defined by the following two rules:
- Suppose SPTSSP Ssss ∈=),(，

SSTTSS SsSsSs ∈∈∈ ',, , then：

SPTSSP

SS
a

S

TT

SS

Ssss

Tss

OIa
OIa

∈=⇒
⎪
⎭

⎪
⎬

⎫

∈⎯→⎯

∪∉
∪∈

),(''

'

and SPSP
a

SP Tss ∈⎯→⎯ '

− Suppose ,SPTSSP Ssss ∈=),(TTSSTTSS SsSsSsSs ∈∈∈∈ '' ,,, , then

SPTSSP

TT
a

T

SS
a

S

TT

SS

Ssss

Tss

Tss

OIa
OIa

∈=⇒

⎪
⎪

⎭

⎪
⎪

⎬

⎫

∈⎯→⎯

∈⎯→⎯

∪∈
∪∈

),('''

'

' and SPSP
a

SP Tss ∈⎯→⎯ '

Overall, our approach for timed test cases generation consists of four main
phases:

• The conversion of test purpose into TIOA.
• The construction of a synchronous product.
• The sampling of the TIOA of test purpose and the TIOA of

specification.
• The traversal of the resulting GA.

The conversion of test purpose into TIOA is simple and is explained at the
beginning of this section. For the construction of the synchronous product, we
distinguish between two operations: the construction of the synchronous
product of the TIOA of the specification and the TIOA of the test purpose, and
the construction of the synchronous product of the GA of the specification and
the GA of the test purpose. The choice of which synchronous product to be
constructed depends on the position of the sampling operation. Indeed,
sampling can be done either before the construction of the synchronous product
or after it.
In the first case, the TIOA of the specification and the TIOA of the test purpose
are sampled to construct their respective GAs; then, the resulting GAs are
synchronized following definition 5. In the second case, the TIOA of the
specification and the TIOA of the test purpose are synchronized first according
to definition 4; then the GA of the resulting TIOA is constructed.

The position of sampling in the whole process is crucial because the sampling
of a TIOA depends on the number of clocks used. Indeed, the granularity of

sampling is
)1(+n

k , where k is a non-null natural and n is the number of clocks

in the TIOA to be sampled. One can easily see that when sampling is done
after synchronous product the granularity is bigger and so is the number of
states in the resulting GA. Consequently, the number of generated test cases is
bigger than if sampling would have been done before synchronous product.
This is true because the number of clocks in the synchronous product of two
TIOAs is the sum of the number of clocks in each of them (see Figure 4). It
should be mentioned that we implemented the two variants of sampling method
in order to have quantitative measures on the number of test cases generated in
each case. This will help us later, in a future work, in the assessment of fault
coverage since the latter might be strongly related to the way sampling is done.

The traversal of the resulting GA is the last step in the whole process. It aims at
the generation of the final test cases. We use a variant of depth-first traversal to
generate timed test cases. The modification of the original depth-traversal
algorithm is done depending on the test selection criterion to be used. In fact,
we have different traversal strategies to generate test cases from the resulting
GA. In particular, we can use all-pass-verdict test selection criteria to generate

all test cases that lead to the verdict Pass, one-pass verdict test selection criteria
to derive one test case that leads to the verdict Pass, all-fail-verdict test
selection criteria to generate all test cases that lead to the verdict fail, etc. A
verdict “Pass” is concluded if the IUT satisfies both the specification and the
test purpose. However, a verdict “Fail” is concluded if the IUT does not satisfy
the specification. Finally, a verdict “Inconclusive” is concluded if the IUT
satisfies the specification but not the test purpose.

For the traversal of the GA based on all-pass-verdict selection criterion, we
start at the initial state of the GA and we move downward until a leaf with
pass-verdict is reached. This will result in a new test case after which we go
one level up in the hierarchy and we try to generate another test case. The
process stops when all pass-verdict paths are covered.

Note that each test case generated by our method consists of input actions, time
delays, and output actions. Moreover, all test cases are executable and can be
easily represented in TTCN by using ordinary timers only. For each time delay
in a test case, we set a timer and we wait for its expiration before proceeding to
the processing of the next event in the test case.

Figure 5 shows a simple GUI of our tool. On the inner windows of it appear
some test cases for the specification of Figure 1 and the test purpose of Figure
2. Here, the granularity used is 0.33 and the test selection criterion used is all-
pass-verdict.

Figure 5: A GUI Implementation and Sample of test cases
generated

The test case “?image.0.67.?sound.!ackall.0.33.!reset”means that the tester
submits to the implementation under test the input ?image, waits 0.67 time-
units, submits the input ?sound, observes the output !ackall, waits 0.33 time-
units, and then should observe the output !reset.

5. Conclusion

We presented a methodology to generate test cases for real-time systems
specified by TIOA. Our method is based on test purposes expressed as MSCs

and so helps the tester clearly specify what he/she wants to test. We
implemented our approach in a tool using C++ and applied it on different
examples with different sizes (different locations, different clocks, different
transitions, etc.). For most of the examples used, our tool successfully
generates test cases with acceptable execution time.

We are currently working on the assessment of the fault coverage of our
method and all the factors that influence it. We are also planning to extend our
methodology to non-deterministic TIOA as well as TIOA extended with data
variables.

References

[1] ITU-T. Message Sequence Chart (MSC). International
Telecommunications Union, Telecommunications Standards Sector (ITU-T).
Recommendation Z.120, 2001.

[2] Abdeslam En-Nouaary and Rachida Dssouli. A Guided Method for
Testing Timed Input Output Automata. TestCom2003, France, 2003

[3] C. Daws and S. Yovine. Reducing the number of clock variables of
timed automata. In 1996 IEEE RTSS’96, Dec. 4-6, 1996, Washington, DC,
USA.

[4] Paul Baker, Paul Bristow, et al. Automatic Generation of Conformance
Tests From Message Sequence Charts. 3rd SAM Workshop, University of
Wales, 2002.

[5] Abdeslam En-Nouaary, Rachida Dssouli, and Ferhat Khendek. Timed
Wp-Method: Testing Real-time Systems. IEEE Transactions on Software
Engineering, November 2002.

[6] B. Nielsen and A. Skou. Automated Test Generation from Timed
Automata. Proc. Workshop Tools and Algorithms for the Construction and
Analysis of Systems, Apr. 2001

[7] Philipp Lucas. Timed Semantics of Message Sequence Charts Based on
Timed Automata. Workshop on Theory and Practice of Timed Systems
(TPTS'02), Grenoble, April 2002.

[8] Robert Nahm. Conformance Testing Based on Formal Description
Techniques and Message Sequence Charts. March, 1995.

 [9] R. Alur and D. Dill. A Theory of Timed Automata. Theoretical
Computer Science, 126:183-235, 1994.

[10] K.G. Larsen and W. Yi. Time Abstracted Bisimulation: Implicit
Specification and Decidability. Proc. Math. Foundations of Programming
Semantics (MFPS 9), April 2001.

 [11] ITU-T, TTCN-2. The Tree and Tabular Combined Notation (TTCN).
Conformance Testing Methodology and Framework, Part 3, Recommendation
X.292, 1997.

 [12] D. Clarke and I. Lee. Automatic Generation of Tests for Timing
Constraints from Requirements. In Proceedings of the Third International
Workshop on Object-Oriented Real-Time Dependable Systems, California,
February 1997.

[13] Sebastien Salva, Eric Petitjean, and Hacene Fouchal. A Simple
Approach to Testing Timed Systems. In Proceedings of the Workshop on
Formal Approaches to Testing of Software (FATES’01), Aalborg, Denmark,
August 2001.

 [14] J. Springintveld, F. Vaadranger, and P. Dargenio. Testing Timed
Automata. Theoretical computer science journal, 2001.

[15] R. Castanet, O. Kone, and P. Laurencot. On the Fly Test Case
Generation for Real Time Protocols. IC3N’98, Bordeaux University, France,
1998.

 [16] A. Khoumsi, M. Kalay, R. Dssouli, A. En-Nouaary, and L. Granger. An
Approach for Testing Real-Time Protocols. TESTCOM, Aug./Sept. 2000.

[17] T. Higashino et al. Generating test cases for a timed I/O automaton
model. In G. Csopaki, S. Dibuz, and K. Tarnay, eds, Proc. IFIP Int’l Work.
Test. Communicat. Syst. (IWTCS). 1999. Budapest, Hungary: MA: Kluwer
Academic.

[18] Abdeslam En-Nouaary, Ferhat Khendek and Rachida Dssouli: Fault
Coverage in Testing Real-Time Systems, In the 6th International Conference on
Real-Time Computing Systems and Applications (RTCSA), Hong Kong,
December 1999.

	Definition 1: Timed Input Output Automaton
	Definition 2: Test Purpose
	It should be mentioned that we use only a subset of MSC-2000
	In order to generate test cases systematically from test pur
	Definition 3: Grid Automaton
	Definition 4: Synchronous Product of Two TIOAs
	In addition to the synchronous product of two TIOAs, we also
	Definition 5: Synchronous Product of Two GAs

