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Abstract 
 
This paper addresses timed test cases generation using test purposes given as 
Message Sequence Charts (MSCs). A test purpose is a partial behaviour of the 
system under test. Test purposes are very important in testing because they 
help reduce the number of test cases while guaranteeing acceptable faults 
coverage. The adoption of MSCs as a model for test purposes is very important 
because they have a graphical representation that can be used to express 
clearly what the user wants to test. The approach presented in this paper is 
fundamentally based on timed input output automata (TIOA) theory. An 
example is used to illustrate the concepts and the steps of the approach 
presented in this paper. 
 
 
1. Introduction 
 
Testing is one of the most important and crucial activities of software life 
cycles. The objective of testing is to make sure that the functionalities of a 
system are correctly implemented. This is generally done in three steps. First of 
all, test cases are generated from the specification of the system and/or test 
purposes. Then, the generated test cases are applied to the implementation of 
the system under test (IUT for short) and the reactions of IUT are observed. 
Finally, the test results are analyzed and a verdict is concluded: if the outputs of 
each test case match those expected (i.e., derived from the specification) the 
implementation is said to be conform to the specification; otherwise, the 
implementation is faulty and the diagnosis process is started to locate and fix 
the fault. 
 
Over the past three decades, a lot of works have been done in testing. 
Particularly, many algorithms have been developed to generate test cases from 
different formal models such as (extended) finite states machines. 
Unfortunately, these works cannot be used to test timed specifications because 
the models on which they are based lack time expressiveness. So, many 
researchers, over the last past decade, have been investigating timed testing 
with different backgrounds and different formal timed models (see for instance 
[2, 4, 5, 6, 12, 13, 14, 15, 16, 17]). Although the proposed methodologies are 
successful in testing timed specification with different faults coverage, most of 
them suffer from the state explosion problem and an exorbitant number of test 



cases. That is one of the reasons why the search for a new approach for timed 
testing is still needed. 
 
This paper addresses timed test cases generation using test purposes given as 
Message Sequence Charts (MSCs). A test purpose is a partial behaviour of the 
system under test [2, 8, 13, 15]. Test purposes are very important in testing 
because they help reduce the number of test cases while guaranteeing 
acceptable faults coverage. The adoption of MSCs as a model for test purposes 
is very important because MSCs have a graphical representation that helps a 
user clearly express what he/she wants to test. Moreover, MSCs are widely 
used in the telecommunication industry and so one can easily see the 
application that the proposed approach might have. In this paper, we will 
introduce a methodology for timed test cases generation based on MSC-2000. 
It should be recalled that MSC-2000 provides designers and testers with 
constructs to express timing behaviour by not only timers but also time 
constraints between any pair of events appearing on MSC diagrams [1, 4, 7].  
  
The rest of this paper is organized as follows. Section 2 discusses the issues to 
be investigated in timed testing. Section 3 presents our approach for timed test 
cases generation. Section 4 concludes the paper and presents future work. 
 
2. Issues to be investigated in timed testing 
 
The main problem faced when testing against timed specification is the 
existence of time constraints in the specification of the system to be tested. The 
generated test cases may not be executable due to the existence of the clock 
conditions associated with the transitions in the specification. Moreover, test 
execution consists of not only observing the outputs and verifying the target 
states of the transitions but also checking that the implementation of the system 
under test does not accept the inputs and does not respond with the outputs 
outside the interval fixed in the specification of the system. This is difficult 
because the time is not under the direct control of the tester. Moreover, this 
difficulty varies with the timed model used and the time semantics adopted. For 
example, discrete timed models are much easier to test than dense/continuous 
timed models. Indeed, discrete time models can easily be transformed into a 
FSM by introducing a special time event “tick” that represents the progression 
of time from t to t+1. However, under dense time models the time values are 
real numbers and hence infinite. 
 
In general, a certain number of issues should be investigated when testing 
timed specifications. The first issue is the executability of test cases. This 
means that the time constraint of each transition traversed by a test case should 
be satisfied by the values of clocks during the execution of the test case. In this 
paper, the specification is modeled as a TIOA and test cases are generated not 
directly from TIOA but from an automaton that represents the executions of 



TIOA. Such an automaton, called the grid automaton, is automatically 
constructed by the tool implementing our approach. 
 
The second issue to be considered is the fault model. It refers to the set of 
potential faults that can be encountered in an implementation of a timed 
specification. The fault model is much related to the specification model used 
to describe the behaviour of the system under test. In the case of timed systems, 
the fault model consists of four types of faults: the output faults, the transfer 
faults, the time constraints widening faults, and the time constraints narrowing 
faults. The fault model is very important because it helps in developing 
efficient methods. In this paper, we will not talk in more details about fault 
models. However, the interested reader is invited to consult the already 
published works on timed fault models [18]. 
 
The third issue to investigate is the fault coverage of test cases. This refers to 
the power of a test cases generation method to detect the potential faults in the 
implementation of the system under test (i.e., the faults listed in the fault 
model). Therefore, test cases generation methods can be compared based on 
their fault coverage.  A method A is said more efficient than a method B if A 
detects more faults than B. However, for a more accurate comparison other 
criteria, such as the length of test suite, should be taken into account. For the 
sake of space, a comparison between existing timed test cases generation 
methods will be left to a future paper. 
 
The fourth issue is the conformance relation between the implementation and 
its specification. The conformance relation is a very important aspect in testing 
because it gives the meaning of the conformance between an implementation 
and its specification. Indeed, a conformance relation is a mathematical relation 
between the implementation and its specification. To be able to formalize such 
a relation, we always assume that both the specification and the implementation 
are described in the same formal model. This paper is based on test purpose, so 
the idea is to check whether or not the IUT includes the behaviour expressed by 
the test purpose. In other words, the formalization of conformance relation is 
not the main concern in this paper. Notice that the infinity/density of time 
domain makes it difficult to choose feasible conformance relation. 
 
Now that we presented the problems related to timed testing, we will introduce 
in the next section our approach for timed test cases generation. Such an 
approach solves the executability problem and guarantees acceptable fault 
coverage. 
 
3. Our approach for Timed Test Cases Generation 
 
    Our approach for timed test cases generation is fundamentally based on 
TIOA and MSC. TIOA is used to describe the specification of the system while 
MSC2000 is used to specify the test purpose of the user. MSC2000 provides 



the user with constructs to specify the timing behaviour of a real-time system 
by not only timers but also with time constraints between any pair of events. 
The formal definition of TIOA and test purpose can be stated as follows. 
 

Definition 1: Timed Input Output Automaton 
 
A Timed Input Output Automaton (TIOA) A is a tuple (IA, OA, LA, l0

_A, CA, TA) 
[2, 9, 14], where: 
 
− IA is a finite set of input actions. Each input action begins with “?”. 
− OA is a finite set of output actions. Each output action begins with “!”. 
− LA is a finite set of location. The term “location” is chosen instead of the 
term “state” because the latter is used to define the operational semantics of 
the TIOA. 
− l0

_A ∈ LA is the initial location. 
− CA is a finite set of synchronous clocks set to zero in l0

A.  We assume that 
the time is dense, which means that the clocks values are real numbers. 
− TA is the set of transitions. Each transition consists of a source location, 
an input or an output action, a clock guard that should hold in order to execute 
the transition, a set of clocks to be reset when the transition is executed, and a 
destination location. We assume that the transitions are instantaneous. 
 
Figure 1 is an example of TIOA that describes the behaviour of a simple 
multimedia system. The system receives an image and its sound within two 
time-units, sends an acknowledgment in less than five time-units after the 
reception of the image, and then sends the message reset and starts waiting for 
another image. If the time constraints are not satisfied, the system issues the 
message error and goes back to its initial state. The TIOA that describes the 
system has four locations l0 (the initial location), l1, l2, and l3, six transitions 
and two clocks x and y. The transition from l0 to l1, denoted by 

, is executed when the system receives the message 
image and the value of clock x is less than or equal to 2. When the transition is 
fired, the clocks x and y are set to 0. 
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Figure 1: Specification of Multimedia System 

 



Definition 2: Test Purpose 
A Test purpose is a description of the property to be tested by a user. Such a 
property represents a sequence of interactions among the components of the 
system and with their environment as well as the time constraints on these 
interactions.  
 
An example of test purpose in MSC 2000 is given in Figure 2. Here, the user is 
interested in checking if the implementation of the multimedia system can 
accept an image followed by its sound within one time-unit, and respond with 
an acknowledgment in less than two time-units after the reception of the sound. 
As one can easily see from this example of test purpose, the user is not 
interested in verifying all the functionalities of the system (i.e., the whole 
specification) but only a subset of them. The functionalities wanted by the user 
can be, for instance, the most critical functions of the system or the most 
frequently executed parts of the system. 

 

 
 

 
Figure 2: Test Purpose of Multimedia System 



It should be mentioned that we use only a subset of MSC-2000 for the 
expression of test purposes. Indeed, we limited ourselves to Basic MSC 
(BMSC). Moreover, the BMSC used consists of two instances only (one for the 
IUT and the other one for the environment), and contains neither co-regions 
nor inline expressions. For time constraints, our approach takes into 
consideration the use of timers and the relative and absolute time intervals on 
the occurrence of events in test purpose. BMSC with more than two instances 
as well as HMSC and inline expressions are left to future work. 

In order to generate test cases systematically from test purposes, we have to 
convert the MSCs of those test purposes into the model of the specification 
(i.e., TIOA). Such a conversion is done as follows. Each message received by 
the IUT in MSC is translated to an input action in TIOA, and each message 
sent by the IUT is translated to an output action; the state between each pair of 
exchanged messages is identified as the location in TIOA. The timer events and 
the time constraints in MSC can be described by the replacing clocks of TIOA. 
A critical problem of the resulting TIOA is that the number of clocks could be 
unnecessary larger than what we need. Therefore a process is needed to 
minimize the number of clocks for the resulting TIOA [3]. 
 
The TIOA model introduced above is an abstract model because it doesn't 
explicit all the possible executions of the described system. Therefore, test 
cases cannot be generated directly from TIOA specification. We need to use 
the executions of TIOA for such purpose. Such executions, called the 
operational semantics, can informally be stated as follows. The TIOA starts at 
its initial location with all clocks initialized to zero. Then, the values of clocks 
increase synchronously and measure the amount of time elapsed since the last 
initialization. At any time, the TIOA can make a transition if the values of 
clocks in the current location satisfy the clock guard of the transition. In this 
case, all the clocks in the reset set of the transition is initialized to zero and the 
TIOA moves to the destination location of the transition. The formalization of 
the operational semantics of TIOA is based on the concepts of state and clock 
valuation. A clock valuation v is a mapping from the set of clocks of TIOA to 
the set of real numbers (i.e., each clock is assigned a value, which is a real 
number). However, a state is couple (l, v) where l is a location in TIOA and v 
is a clock valuation.  
 
Since we assume dense time model, one can easily see that the number of 
states of a TIOA is infinite. This is mainly due to the infinity of delay 
transitions upon the progression of time. Hence, it is impossible to generate 
test cases directly from the semantics of TIOA.  To address the problem, we 
will not base our test cases generation method on the whole operational 
semantics of TIOA but on a subset of it, called Grid Automaton (GA) [2, 5, 
10, 14]. The GA limits the delay transitions to a fixed time delay g, which is 
called the time granularity. The construction of GA is called the sampling of 



TIOA. The definition of GA is as follows. 
 

Definition 3: Grid Automaton 
Let A = (IA, OA, LA, l0

A, CA, TA) be a TIOA. The Grid Automaton (GA) of A is a 
finite input output automaton GA = (IGA, OGA, SGA, s0

GA, TGA), where:  
− IGA = IA ∪ {g}, where g is a special time delay (g is a rational number). 
− OGA = OA. 
− SGA is finite set of system states. Each state is a pair (l, v), where l∈ LA 
and v is a clock valuation in which the value of each clock is a multiple of g. 
− s0

GA is the initial state that consists of the initial location , l0
A with all 

clocks values set to 0. 
− TGA is a finite set of Transitions.  
 
Each transition consists of a source state, an action (input, output, or time delay 
g), and a destination state. There are two types of transitions in GA: the delay 
transitions on time delay g and the explicit transitions on input and output 
actions. Each state in GA has an outgoing delay transition on time delay g. 
However, a state (l, v) has an outgoing explicit transition on input or output 
action a if and only if there is a transition  in A and v satisfies the 
clock guard G. After the execution of a delay transition on g, the value of each 
clock is incremented with g time-units. However, after the execution of an 
explicit transition the value of each clock in λ (i.e., the set of clocks to be reset 
by the transition) in A is zero. 

',,}!{?, ll Ga ⎯⎯⎯ →⎯ λ

Figure 3 shows the partial GA of the TIOA in Figure 1 sampled with a 
granularity g = 0.5. 

 

 
Figure 3:  Grid Automaton of Specification 



 

When testing is based on test purpose, it’s likely that the property to be 
checked (i.e., the test purpose) is not a subset of the specification or is 
inconsistent with the specification. For this reason, we have to validate the test 
purpose against the specification, which is always assumed to be correct. To 
validate the test purpose against the specification of the system under test, we 
use a special composition of the test purpose and the specification. Such a 
composition is called synchronous product and is formally defined as follows. 

Definition 4: Synchronous Product of Two TIOAs 
Let  and  be two TIOAs. 
The synchronous product of S  and 
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      As an example, Figure 4 is the synchronous product of test purpose and 
specification TIOAs for the multimedia system of Figure 1 and Figure 2. 



 
 

Figure 4: Synchronous product of specification and test purpose. 
 
 

In addition to the synchronous product of two TIOAs, we also define the 
synchronization between two GAs as follows. 

Definition 5: Synchronous Product of Two GAs 
Let  and  be two TIOAs. The 
synchronous product of S  and 

),,,,( 0
SSSSS TsSOIS = ),,,,( 0

TTTTT TsSOIT =
T  is a special composition 

 of S and T such that: ),,,,( 0
SPSPSPSPSP TsSOISP =

• ISP = IS ∪ IT and OSP = OS ∪ OT. 
• LSP ⊆ LS × LT. 
• l0

S = ( l0
S , l0

T ). 
• CSP = CS ∪ CT. 
• LSP and TSP are the smallest relations defined by the following two rules: 
- Suppose SPTSSP Ssss ∈= ),( ，  

SSTTSS SsSsSs ∈∈∈ ',, , then： 
 

SPTSSP

SS
a

S

TT

SS

Ssss

Tss

OIa
OIa

∈=⇒
⎪
⎭

⎪
⎬

⎫

∈⎯→⎯

∪∉
∪∈

),( ''

'

and  SPSP
a

SP Tss ∈⎯→⎯ '

 
− Suppose ,SPTSSP Ssss ∈= ),( TTSSTTSS SsSsSsSs ∈∈∈∈ '' ,,, , then 
 

SPTSSP

TT
a

T

SS
a

S

TT

SS

Ssss

Tss

Tss

OIa
OIa

∈=⇒

⎪
⎪

⎭

⎪
⎪

⎬

⎫

∈⎯→⎯

∈⎯→⎯

∪∈
∪∈

),( '''

'

'  and   SPSP
a

SP Tss ∈⎯→⎯ '



 
 
Overall, our approach for timed test cases generation consists of four main 
phases:  

• The conversion of test purpose into TIOA. 
• The construction of a synchronous product. 
• The sampling of the TIOA of test purpose and the TIOA of 

specification. 
• The traversal of the resulting GA. 

 
The conversion of test purpose into TIOA is simple and is explained at the 
beginning of this section. For the construction of the synchronous product, we 
distinguish between two operations: the construction of the synchronous 
product of the TIOA of the specification and the TIOA of the test purpose, and 
the construction of the synchronous product of the GA of the specification and 
the GA of the test purpose. The choice of which synchronous product to be 
constructed depends on the position of the sampling operation. Indeed, 
sampling can be done either before the construction of the synchronous product 
or after it.  
In the first case, the TIOA of the specification and the TIOA of the test purpose 
are sampled to construct their respective GAs; then, the resulting GAs are 
synchronized following definition 5. In the second case, the TIOA of the 
specification and the TIOA of the test purpose are synchronized first according 
to definition 4; then the GA of the resulting TIOA is constructed.  
 
The position of sampling in the whole process is crucial because the sampling 
of a TIOA depends on the number of clocks used. Indeed, the granularity of 

sampling is
)1( +n

k , where k is a non-null natural and n is the number of clocks 

in the TIOA to be sampled.  One can easily see that when sampling is done 
after synchronous product the granularity is bigger and so is the number of 
states in the resulting GA. Consequently, the number of generated test cases is 
bigger than if sampling would have been done before synchronous product. 
This is true because the number of clocks in the synchronous product of two 
TIOAs is the sum of the number of clocks in each of them (see Figure 4). It 
should be mentioned that we implemented the two variants of sampling method 
in order to have quantitative measures on the number of test cases generated in 
each case. This will help us later, in a future work, in the assessment of fault 
coverage since the latter might be strongly related to the way sampling is done. 
 
The traversal of the resulting GA is the last step in the whole process. It aims at 
the generation of the final test cases. We use a variant of depth-first traversal to 
generate timed test cases. The modification of the original depth-traversal 
algorithm is done depending on the test selection criterion to be used. In fact, 
we have different traversal strategies to generate test cases from the resulting 
GA. In particular, we can use all-pass-verdict test selection criteria to generate 



all test cases that lead to the verdict Pass, one-pass verdict test selection criteria 
to derive one test case that leads to the verdict Pass, all-fail-verdict test 
selection criteria to generate all test cases that lead to the verdict fail, etc. A 
verdict “Pass” is concluded if the IUT satisfies both the specification and the 
test purpose. However, a verdict “Fail” is concluded if the IUT does not satisfy 
the specification. Finally, a verdict “Inconclusive” is concluded if the IUT 
satisfies the specification but not the test purpose.  
 
For the traversal of the GA based on all-pass-verdict selection criterion, we 
start at the initial state of the GA and we move downward until a leaf with 
pass-verdict is reached. This will result in a new test case after which we go 
one level up in the hierarchy and we try to generate another test case. The 
process stops when all pass-verdict paths are covered. 
 
Note that each test case generated by our method consists of input actions, time 
delays, and output actions. Moreover, all test cases are executable and can be 
easily represented in TTCN by using ordinary timers only. For each time delay 
in a test case, we set a timer and we wait for its expiration before proceeding to 
the processing of the next event in the test case. 
 
Figure 5 shows a simple GUI of our tool. On the inner windows of it appear 
some test cases for the specification of Figure 1 and the test purpose of Figure 
2. Here, the granularity used is 0.33 and the test selection criterion used is all-
pass-verdict.  



  
 

Figure 5: A GUI Implementation and Sample of test cases 
generated 

 
The test case “?image.0.67.?sound.!ackall.0.33.!reset”means that the tester 
submits to the implementation under test the input ?image, waits 0.67 time-
units, submits the input ?sound, observes the output !ackall,  waits 0.33 time-
units, and then should observe the output !reset. 
 
 
 
5. Conclusion 
 
We presented a methodology to generate test cases for real-time systems 
specified by TIOA. Our method is based on test purposes expressed as MSCs 



and so helps the tester clearly specify what he/she wants to test. We 
implemented our approach in a tool using C++ and applied it on different 
examples with different sizes (different locations, different clocks, different 
transitions, etc.). For most of the examples used, our tool successfully 
generates test cases with acceptable execution time. 
 
We are currently working on the assessment of the fault coverage of our 
method and all the factors that influence it. We are also planning to extend our 
methodology to non-deterministic TIOA as well as TIOA extended with data 
variables. 
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