
TIMe - The Integrated
Method
1TIMe at a glance
Rolv Bræk
Joe Gorman

Øystein Haugen
Geir Melby

Birger Møller-Pedersen
Richard Sanders

About TIMe and the SISU project TIMe
TIMe Report
About TIMe and the SISU project

TIMe, The Integrated Method, is a continued improvement of the results from the SISU
Project, a Norwegian technology program that aimed to improve the productivity and
the quality of Norwegian companies that develop systems within the real-time domain.
The project ran in two periods, SISU-I (1988 - 1992) and SISU-II (1993 - 1996).

The following companies and research institutes participated in the SISU project:

Thomson-CSF Norcom, Siemens, Ericsson, Kongsberg-Ericsson, Stento, Tandberg
Data, Norsonic, Seem Audio, Norapp, TrioVing, Seatex-Garex, Telox, Kjell G. Knut-
sen, CAP Gemini, SINTEF, Norwegian Computer Center.

The project had focus on methods and languages for making System descriptions, Ver-
ification and Validation, Configuration Control and Process quality.

The project was active in the development of SDL-92 and the methodology guidelines
for SDL, and in the MSC-96 standard. We are currently active in the standardization
work for SDL and MSC year 2000.

SISU-I produced the book “Engineering Real Time Systems” by Rolv Bræk and Øystein
Haugen [1]. More than 20 companies use the SISU-I methodology actively in their prod-
uct development. Most of them have tool support for SDL with code generation.

The Integrated Method was the final outcome of the SISU-II project. SINTEF have
taken over the results and have made TIMe commercially available. For more informa-
tion contact us at:

TIMe c/o SINTEF
N-7465 Trondheim
Norway

Phone: (+47) 73 59 30 00
Fax: (+47) 73 53 25 86
email: time@sintef.no
WWW: http://www.sintef.no/time
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-142 -

About the authorsTIMe
TIMe Report
About the authors

Rolv Bræk; SINTEF Telecom and Informatics
Rolv graduated from the Norwegian Institute of Technol-
ogy (NTNU/NTH) in 1969 and has been working with
SINTEF since 1973, where he is Principal Research Scien-
tist. He is also Professor at the University of Science and
Technology in Trondheim (NTNU).

Rolv has been working with software engineering method-
ology since the early 70’s in close cooperation with
Norwegian industry. One of the most reputed projects was
the MAREIK project in the INMARSAT system 1979-81.

Rolv has been working with formal description techniques
for decades, and fathered the SOM1 language and methodology, a parallel development
to SDL. He is currently occupied with introducing TIMe to Ericsson, and is also con-
tributing to the Z.109 standard for SDL with UML.

Rolv participated in the SISU project, with responsibility for Methodology.

Joe Gorman; SINTEF Telecom and Informatics
Joe studied Computer Science at the University of Glas-
gow, where he gained his Honours Degree in 1977. After
working in Scottish Universities, he started work at SIN-
TEF in 1986.

Joe is involved with contract research work with Norwe-
gian industry, and in international co-operative research
funded by the European Commission. His main research
interests are software engineering, software development
methodologies, compiler techniques and configuration
management.

In the SISU project Joe was responsible for Configura-
tion Management.

1. SOM initially stood for Structure-Oriented Modeling, and was later changed to SDL-Oriented Methodology.
SOM is no longer supported by SINTEF, but TIMe contains many of the basic principles of SOM.
TIMe at a glance - 3 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

About the authors TIMe
TIMe Report
Øystein Haugen; Ericsson Norway
Øystein graduated from the University of Oslo in 1980,
where he was assistant to Kristen Nygård for a period.

Øystein worked at the Norwegian Computing Center for 4
years as project leader for a Simula machine. From 1984-88
he worked at SimTech, and from 1988-1990 as senior
research scientist at ABB Corporate Research, Norway.
Øystein was an independent consultant while working on his
Ph.D., until he joined Ericsson Norway in 1997 to work on
software methods and languages. Øystein is Associate Pro-
fessor at the University of Oslo.

Øystein participates in the standardization work in ITU, first
in the development of the object-oriented extension of SDL

that where incorporated in the 1992 version of SDL (“SDL-92”), and later as Associate
Rapporteur for MSC in ITU-T Study Group 10, that produced the 1996 version of Mes-
sage Sequence Charts. He is currently Rapporteur for MSC in ITU-T, responsible for the
development of MSC standard year 2000.

Øystein is co-author of Engineering Real Time Systems - An object-oriented methodol-
ogy using SDL. In the SISU project Øystein had responsibility for Verification and
Validation activities.

Birger Møller-Pedersen; Ericsson Norway
Birger graduated from the University of Copenhagen in Den-
mark in 1976.

Birger worked at the Norwegian Computing Center from 1977
to 1996, where he specialized in object oriented languages,
including designing and implementing compilers for Simula,
designing Beta, and later adding object orientation to SDL.

Birger joined Telenor Research and Development (the Norwe-
gian PTT) in 1996, where he amongst other things worked on
Java in TMN.

In 1998 Birger joined Øystein and Geir at Ericsson NorARC, where he has continued
his work with TIMe and SDL. Birger is also Associate Professor at the University of
Oslo.

Birger participates in the standardization work in ITU, first as Associate Rapporteur in
the development of the object-oriented extension of SDL that where incorporated in the
1992 version of SDL (“SDL-92”). He is currently participating in the ITU-T Study
Group 10, working on the next version of the SDL standard scheduled for the year 2000.
Birger is Associate Rapporteur for the harmonization of SDL and UML, in the coming
Z.109 standard.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-144 -

About the authorsTIMe
TIMe Report
Birger is co-author of The BETA Programming Language and Systems Engineering
Using SDL-92.

Geir Melby; Ericsson Norway
Geir worked at Telox until 1988, where he acted as manager and
consultant. Geir participated in the development of embedded
software systems for industrial companies and in Telox’ own
products, that included a run-time support system for SDL
(Telox SDL Tools).

Geir left Telox to lead the SISU project from 1988 to 1996.

Geir joined Ericsson Norway in 1996, where he is manager of
the Software Engineering Laboratory of the Applied Research
Department.

Richard Sanders; SINTEF Telecom and Informatics
Richard graduated from the University of Trondheim, Insti-
tute of Informatics in 1984, Mastering in Computer Science
and Telematics. He worked for 3 years as a consultant with
Computas (now a part of CAP Gemini), developing embed-
ded software for communication systems using SDL/SOM,
and working on a CASE tool for SDL (DASOM).

Richard worked at Stentofon (now Stento) from 1987 to
1994 as designer and later software manager, developing a
new generation communication exchange, where automatic
code generation from SDL was introduced in 1988, to our

knowledge the first industrial project to do so. Stentofon were participants of the SISU
project from the start.

Richard joined SINTEF in 1994, where he has been working with development meth-
odology (in the SISU project and in Mechatronics), and as a UML/MSC/SDL designer
in industry projects. He is currently occupied with introducing TIMe to Ericsson Nor-
way. Richard also lectures at the University of Science and Technology in Trondheim
(NTNU).
TIMe at a glance - 5 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

About the authors TIMe
TIMe Report
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-146 -

Table of ContentsTIMe
TIMe Report
Table of Contents

About TIMe and the SISU project .2
About the authors .3
Table of Contents .7
Introduction .8
TIMe from SISU .13
What’s in TIMe for the manager .13
What’s is TIMe for the designer .14
The Why, What and How of TIMe. .15
Introduction .15
TIMe Essentials .20
System Development Activities .32
Analysis. .33
Design .53
Implementation .71
Instantiation. .71
Object and Property Models
- and the Languages for describing them .73
Object Modelling .73
Property Modelling .89
List of figures .97
List of definitions .99
References .109

TIMe at a glance
TIMe at a glance - 7 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Introduction TIMe
TIMe Report
Introduction

The Integrated Method (TIMe) supports design oriented development, an approach to
system development where systems are understood and maintained mainly in terms of
abstract design descriptions. It even goes one step towards making the vision of property
oriented development come true.

TIMe for
what?

TIMe is designed for systems that are

• reactive,

• concurrent,

• real-time,

• distributed,

• heterogeneous and

• complex.

TIMe is centered around a set of models and descriptions capable of expressing domain
knowledge, system specifications in terms of external properties, system designs in
terms of structure and behaviour, implementation mappings and system instantiation.

Like most other similar methods, TIMe distinguishes between Analysis, Design, Imple-
mentation and Instantiation (see Figure 1).
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-148 -

IntroductionTIMe
TIMe Report
Figure 1: TIMe activities, descriptions and languages

Open figure

How TIMe
is different

The distinction between Domain and System Design is not particular for TIMe. What is
special, however, is that:

• design is split between

- application design, where the functionality of the system is design,

- architecture design, where the non-functional properties are taken care of, and

- framework design, that defines types of systems with the same infrastructure (e.g.
supporting distribution) where the application specific parts are singled out to be
redefinable in specific systems.

• the complementary object models and property models are used both for domain and
system analysis, and for design.

TIMe provides:

• a set of system development activities that covers most of the system development
process, with emphasis on the activities leading to implementation,

Domain Descriptions

System Family descriptions

Instance Descriptions

Analysis

Domain Analysis

Requirements analysis

Design

Application design

Framework design

Architecture design

Implementation

Instantiation

Configuration

Building

Testing

Object
Models

Property
Models

Object
Models

Property
Models

Concrete system

Specifications

Implementation

Instance
configuration

MSC,

SDL

Design Models

UML
TIMe at a glance - 9 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Introduction TIMe
TIMe Report
• guidelines on object and property modeling in general, and particularly how to do it
in UML [24] / SDL [11] - [13], [16] and MSC [14],[18] respectively, and

• tutorials in UML, SDL and MSC.

Object
oriented

TIMe is truly object oriented in its approach. It defines its own underlying object and
property models, and contains detailed guidelines on:

• how to make analysis object models using Unified Modeling Language (UML),

• how to make design object models using Specification and Description Language
(SDL), and

• how to make interaction property models and Use Cases using Message Sequence
Charts (MSC).

TIMe is characterised by:

Abstract
models

• Emphasis on abstract models and descriptions: Abstract descriptions leave out
implementation specific details and let the developers focus on functionality.

Property
models

• Focus on (external) properties: Objects are the building material from which systems
and components are constructed. Property descriptions are used at an early stage of
development to express the properties required from a system or an object. At a later
stage they are used to express the properties actually provided by a system or
component.

Service
orientation

• Users tend to think in terms of services and interfaces. Therefore TIMe recommends
use of separate property models for services and interfaces. These models are used
for high level service engineering, and for synthesising object designs that provide
the services.

Roles • Strong object-property relationships: Roles are used to describe properties, and are
related to object designs by projection. Roles are used to link properties and objects.
Projections are used for synthesis of new objects and for documenting existing
objects.

Design for
reuse

• Planned variability and reuse: TIMe seeks to make generic system families that may
be adapted as easily and safely as possible to the needs of particular systems. Com-
ponents for reuse across families come from general domain descriptions. TIMe
describes a cost-effective way to define instantiation of particular systems by defin-
ing the general parts by reference to the family description, detailing only what is
special for that particular occurrence, i.e. its configuration.

Synthesis • Design synthesis: Property oriented design involves:

- Decomposing required service and interface properties into object properties.

- Synthesizing object designs from required object properties, by transformation
and by composition, taking reuse into account.

- Comparing properties: required against provided (validation).

Design with
reuse

- Searching for components with provided properties corresponding to some
required properties.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1410 -

IntroductionTIMe
TIMe Report
- Composing properties corresponding to object composition.

Goal of this
document

This document provides the TIMe Essentials (p-20), intended for readers that would
like to know why they should use TIMe, get a feeling for what TIMe is, if it applies to
their needs, how it differs from other similar methods, etc.

Focus The focus in this document is the core of TIMe, that is system development activities
with the combined use of UML, MSC and SDL for making models, based on a common
approach to object modeling and property modeling, with emphasis on the early stages
of system development. As indicated in Figure 2, TIMe is more than this.

Figure 2: The core themes of TIMe covered in this introduction, and supplementing themes

Open figure

This introduction can be read as a stand-alone document, but when read in electronic
form, and integrated with the full method book, it also works as an introduction, with
hyperlinks to the whole method.

The section The Why, What and How of TIMe (p-15), together with the last part of
TIMe Essentials (p-20) will tell you why you should use TIMe and what is special about
it. Object and Property Models - and the Languages for describing them introduces
UML, MSC and SDL for those that are not familiar with them. TIMe Essentials (p-20)
provides an overview. The rest of the document is organized mainly according to the
development activities of the method (see System Development Activities).

Tech-
niques
for
improve-
ment
of

Verifying

and validating
both

and

against
requirements

Metrics, that is the
measurement of
and

Configuration
management, that is
management of

The activities
of making descriptions
(with object models and
property models)
in
UML/SDL/MSC
using
development processes
in order to make
families of systems
TIMe at a glance - 11 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Introduction TIMe
TIMe Report
Supple-
menting
elements of
TIMe

As mentioned above, the full method book of TIMe contains important elements that for
reasons of space are not covered in this introduction:

Figure 3: Verification and Validation

Open figure

• Verification and validation deals with “validation”, meaning to determine “whether
we are making the right system” and “verification”, meaning to determine “whether
we are making the system right”. TIMe presents several different approaches to ver-
ification and validation that correspond to different maturity levels of the companies
(or projects):

- test orientation: performed on the implementation of the system.

- inspection orientation: involves human readers who control the quality of the
descriptions.

- animation orientation: executions of the system based on descriptions on higher
abstraction levels than implementation.

- formal analysis orientation: used in order to prove statements about the system, or
to disclose hidden aspects of a system.

- synthesis orientation: the implementation can be synthesised from a description of
the requirements.

TIMe presents techniques on all these levels. TIMe considers constructive rules to be
superior to corrective measures.

implementation

instance

system

domain

needs configuration
Market

specification

design

domain

family

instance

needs

Validation

Verification

Verification

Verification
Validation

Validation

Validation

needs

needs

Verification
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1412 -

Introduction
TIMe from SISU

TIMe
TIMe Report
• Process improvement deals with the introduction of TIMe into a company, and also
covers process monitoring and improvement in general.

We talk about achieving improved productivity and quality by setting goals and follow-
ing one of several improvement methods, like “Mean & Lean”, the Capability Maturity
Model (CMM) or the Risk Management Approach.

It also discusses Risk Assessment and Control, as well as Change Cost Analysis and
measuring the effect of introducing new tools and methods.

• Software configuration management covers how to control a product (in terms of
descriptions) as it evolves. It describes levels of control and management, and
describes means to cope with the complexity of product management.

It presents our view on Configuration Management, which should help in defining plans
for projects and companies.

We identify 3 levels of control and management that can be useful: to achieve Configu-
ration Management we need a platform for Configuration Control. To achieve
Configuration Control we need a platform for Version Control.

We give an indication of what can be obtained by state-of-the-art tools at each level.

• Metrics is about measurement in software development, a field that is known as met-
rics or software metrics. TIMe gives the answers to the questions

- Why are we collecting measurement data?

- How shall we collect measurement data?

- How will we analyze the measurement data?

A method that focuses on this, GQM - The Goal Question Metrics, is presented. It also
discusses how to define useful metrics, and presents a few individual metrics.

TIMe from SISU
TIMe is a development of the Norwegian SISU I methodology described in Engineering
Real Time Systems (Bræk and Haugen 1993, [1]). TIMe has been continually developed
since its inception in the SISU project (1988 - 1996), see http://www.sintef.no/sisu - and
has its name from the fact that it consists of an integration of method elements from dif-
ferent parts of the project. For people with no relation to the project, TIMe could as well
have been an acronym for The Interesting Method, The Important Method, etc.

What’s in TIMe for the manager

TIMe saves
time first
time

Experience from the SISU project has show that TIMe can give you:

• 50% reduction in errors in delivered systems

• reduced development costs equalling or surpassing the cost of introduction on the
first project

• 20% or more reduction of development costs on subsequent projects

• better control over the development process
TIMe at a glance - 13 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Introduction
What’s is TIMe for the designer

TIMe
TIMe Report
• more flexible staffing, with less dependency on individuals

• smoother cooperation between professionals

when TIMe is carefully introduced into an development organisation, compared to a
non-TIMe development paradigm. Some of these claims are proven by metrics pro-
grams in the SISU project, while others are based on interviews with managers.

What’s is TIMe for the designer

TIMe is fun Systems and software designers using TIMe typically experience

• more focus on designing functionality

• more precise communication with peers on design issues

• the pleasure of simulating (executing) designs at an early stage

• modern, state-of-the-art development tools

• less dependence on detailed development environment know-how, more focus on
domain knowledge, making for easier shifts to new projects

• easier maintenance, simpler error correction

• the initial burden of learning a new development paradigm being outweighed by a
better working environment and more job possibilities

compare to a pre-TIMe setting.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1414 -

The Why, What and How of TIMe
Introduction

TIMe
TIMe Report
The Why, What and How of TIMe

Introduction
For the development of complex telecom, real-time or reactive systems in general, a
promising combination is to use:

• Object Orientation as a common approach to analysis, design and implementation,
with concurrent processes as objects;

• Interaction Scenarios for the specification of communication between users and sys-
tems (use cases) and between objects of systems;

• State/Transition based specification of behaviour of individual objects.

Sesam Sesam
decided to go Object Oriented (OO),
like rest of the world. Some years ago
this would have been a tough decision,
but now it looked as if this was the only
right thing to do. The languages and
tools were mature and there was plenty
of help to get from books, courses and
consultants - the problem was rather
that there was too much help to get.

For many years, the company had great
success with their door locks and sys-
tem keys. Their selling point was the
highly flexible way that keys and locks
could be coded to give user groups dif-
ferent access rights in a building com-
plex.
But even their system had two main
drawbacks: Lost keys and Code limita-
tions. Whenever a key was lost, they

had to change the locks to prevent un-
authorised persons to gain access. Al-
though the system was very flexible, it
was based on fully mechanical locks
and keys with inherent limitations in
the coding.
To overcome these problems and to
stay in front of competition the Sesam
Sesam people were continuously look-
ing for improvement opportunities.
They saw that electronics and comput-
ers were rapidly becoming attractive al-
ternatives as the prices went down and
the reliability up, so they decided to go
for plastic cards and panels with key-
boards and displays at the access
points.
The reason for going OO was that they
would try to come in a situation where
each delivery was composed from gen-
eral components - up till now they had
experience each delivery as almost a
separate implementation. However,
they also knew that their systems would
be rather complex, involving real-time
constraints and consist of large parts
that were reactive of nature, so the
choice of languages, tools and methods
was not obvious.
They bought a tool, consulted the ac-
companying method book, and got the
advice (in a condensed version): “Just
find the objects (they are there to pick)
and you will have the structure of your
system”.

Figure 4: Sesam Sesam Inc

Open figure

INSERT YOUR CARD

1 2 3

4 5 6

7 8 9

0 cancel

insert card here

S
E
S
A
M
S
E
S
A
M

I
N
C

TIMe at a glance - 15 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

The Why, What and How of TIMe
Introduction

TIMe
TIMe Report
Object orientation helps to master complexity by structuring in terms of objects and by
factoring out common properties in general classes. Objects do not live on their own but
communicate with other objects. Interaction Scenarios help to describe and understand
even the most complex interaction cases. Describing the behaviour of each object in
terms of states and transitions that are triggered by incoming signals from other objects
has proven to be of great value for this kind of system.

The com-
bined use of
UML, MSC
and SDL

TIMe supports this combination by the integrated use of

• UML for object model analysis,

• MSC for interaction scenarios, and

• SDL for specification and design of behaviour.

UML and SDL both support object orientation, there are tools integrating them, and the
same tools also support MSC. UML is an OMG standard, while SDL and MSC are stan-
dards from ITU.

Why not
just UML?

UML is accepted by the Object Management Group (OMG) as a Visual Modeling Lan-
guage, and has received much attention from the software engineering community. The
establishment of the UML Revision Task Force gives the potential methods user confi-
dence that this will become the new industry language for systems design. However,
UML is not mature enough to be adopted in its present form as a design language in an
industrial context:

• The language is not yet stable, with considerable changes between 1.0 [3], 1.1 [23]
and 1.2 [24].

• Support for real time concepts is only partial

• The language is not formally defined, with a self-referential meta-model and a
semantics written in prose.

• The interchange format is not yet stable.

• Several textbooks exist [4], [5], [6], [20], [33], but many include features that do not
adhere to the approved standard [23].

• No tools fully support UML, although many promise they will [26], [29], [30], [31].

For these reasons UML is not yet the ultimate, all-compassing language that its founders
aim it to be. TIMe recognizes UML as a substantial improvement over predecessors like
OMT [32], and currently recommends that parts of UML be used, along with industrial
description languages like MSC and SDL, especially for illustrative sketches in early
phases. If UML turns out to be what its founders aim at, while MSC and SDL do not
evolve, TIMe may in the future become a UML methodology.

Presently we believe the combination of UML along with SDL and MSC following the
formal rules to be defined by the ITU in the forthcoming Z.109 standard “SDL with
UML” is the most promising. This is the strategy taken by the major SDL tool vendors
[27], [28].
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1416 -

The Why, What and How of TIMe
Introduction

TIMe
TIMe Report
What about
OMT?

OMT [32] is in widespread use, and many tools are available. TIMe sees OMT as an
informal notation (not a language), and recommends that OMT be used in the same way
as UML, so that the transition from OMT to UML has little risk involved. Version 3.1
of TIMe included an extension to OMT called OMT+-, which has now been
discontinued.

Why UML
and not just
SDL?

Some companies have an established use of MSC/SDL, but for early analysis they nor-
mally use informal drawings. In order to become a little more precise, it could be argued
that SDL can be used for this purpose. It has benefits in that it will ease the shift to design
in SDL, but we advocate the use of UML for the following reasons:

• UML models do not require the same degree of formalization as SDL models do,

• UML supports relations (associations) between objects,

• UML supports fragments of object models, e.g. specifying relations in one fragment
and attributes/operations in another.

However, TIMe also advocates that SDL is used for object modelling in case this is most
appropriate. As an example, if it is important during analysis to specify some main states
(modes) the system may be in, then this may directly be specified in SDL, as opposed
to Statecharts in UML.

Why MSC
and not
Sequence
Diagrams
or Event
Traces?

Some companies have chosen to go Object Oriented by means of UML or OMT. Tools
for UML support Sequence Diagrams (and OMT tools supported Event Traces) for the
formulation of properties of interactions, and to some degree these are integrated with
the object modelling. The reasons for choosing MSC are still:

• MSC is more precise and richer in expression than Sequence Diagrams or Event
Traces. HMSC, MSC references, conditions and in-line expressions are some of the
distinguishing features of MSC.

• The instances in a Sequence Diagrams or in an Event Trace are objects from the
object model, but often they should rather just be roles played by objects. Instances
in MSC diagrams can represent both objects and roles.

Why SDL
and not
State-
charts?

In some literature on state machine based specification of behaviour, Statecharts [7] as
used in UML is the preferred notation. The reason for this is that the notion of nested
states is appealing and that it produces compact specifications1. Statecharts alone is,
however, not a complete language. It does not define communicating objects with data
having the behaviour specified, so other notations and/or tools often add this. The main
reason for using SDL is exactly that:

• SDL is a complete language that defines communicating objects (processes) with
data attributes, operations and behaviour in terms of states and transitions;

• it also defines a structure of subsystems (blocks), and

• because it is a complete language, tools can (and do) support code generation from
SDL specifications, and the integration with MSC allows for some degree of formal
verification and validation.

1. There are currently initiatives in the ITU standardisation work to introduce nested states in SDL. This work
is near its conclusion, and will be part of the year 2000 revision of SDL.
TIMe at a glance - 17 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

The Why, What and How of TIMe
Introduction

TIMe
TIMe Report
In addition, inheritance from the object model can be directly mapped onto inheritance
for SDL process types, including inheritance of attributes, operations and behaviour
(that is inheritance of states and transitions). This means that, if desired, it is possible to
inherit “functionality” and not just “interfaces”.

Another line of reasoning is that an interchange format for SDL descriptions between
different tools is standardised [17] - this eases the transition from one tool vendor to
another.

Are MSC
and SDL
perfect?

The above discussions are not meant to promote MSC and SDL as “the perfect lan-
guages”. They are not. There are thing we miss in MSC, such as guard conditions,
transitions names and the possibility to express constrains. There are things missing
from SDL, not only the obvious lack of relations (which we recommend be expressed in
UML), but also a number of niceties such as substates (i.e. the compact description they
give, which SDL Procedures lack), for/while loops, expressions of algorithms and a
dozen other issues.1

Neither MSC nor SDL are capable of formally defining execution time constraints, or
expressing exact real-time behaviour in terms of process interleaving. Hence TIMe does
not address mission-critical, “hard real-time” systems. Certain vendor-dependent solu-
tions to this are provided by tool vendors [27].

We nevertheless recommend that MSC and SDL be used for the types of systems target
by TIMe for detailed design and systems generation in an industrial context. MSC and
SDL have proved themselves in many real-life projects, and are mature, albeit not per-
fect. UML is still promiseware.

Why a sepa-
rate method
on the com-
bined use?

In conclusion, the combined use of UML, SDL and MSC seems a good idea. But there
are still some issues to consider when using two slightly different object oriented
approaches as represented by UML and SDL:

• uncritical use of relations (associations) will lead to problems when turning to design
in SDL;

• aggregation was a special association in OMT, while UML and SDL support “real
aggregation” (called composition in UML);

• UML (and OMT) supports multiple inheritance (the semantics of which will first
become clear during design), while SDL supports single inheritance only - careful
use of inheritance is therefore an issue.

In addition comes the object orientation you may have to use when considering distri-
bution, e.g. CORBA, and this is yet another approach. TIMe has the answer on how to
isolate the application specific aspects from the distribution aspects.

Why use
TIMe?

There are already a number of methods supporting the combined use of UML, MSC and
SDL, two of these are supported by tool vendors [34], [35]. Still there are some valid
reasons for using TIMe:

1. Work is currently being carried out in ITU SG10/Q6 and Q9 to enhance the “year 2000” versions of MSC
and SDL with such features.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1418 -

The Why, What and How of TIMe
Introduction

TIMe
TIMe Report
• Most methods have a bias towards object modeling - “just find the objects and you
are done”. TIMe comes with a system reference model and emphasises property
modeling as equally important as object modeling. Property modeling includes use
case modeling as a special case.

• TIMe has an answer to where the design objects come from and does not just provide
technical guidelines for how to go from UML to SDL.

• As a mechanism not supported by other methods, TIMe tells you how to make frame-
works in SDL. Frameworks produce the most effective reuse.

• TIMe represents many years of experience with system development and object
orientation.

• TIMe bridges the gap between the user’s world of needs and the designer’s world of
objects.

TIMe can be used as a supplement to other methods. Tool vendor specific methods will
always be useful, as their elements most probably will be supported by the tools.

How to use
TIMe?

TIMe is available both as printed material and as an “electronic book”. The electronic
version allows you to follow links in order to read what you want, e.g. at a specific stage
in the development process. The electronic version allows for company specific exten-
sions, with links into and out of those parts of TIMe that are used.
TIMe at a glance - 19 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

TIMe Essentials
Introduction

TIMe
TIMe Report
TIMe Essentials

This section gives a description of the essential elements of TIMe and what makes it dif-
ferent from other methods.

Systems
and system
descrip-
tions

TIMe is a system development method. A system is a part of the world that a person or
group of persons during some time interval and for some purpose choose to regard as a
whole, consisting of interrelated components, each component characterised by proper-
ties that are selected as being relevant to the purpose. A system is not a description on a
piece of paper, but something actually existing as a phenomenon in the real world. This
puts the system apart from the description of the system. The system actually exhibits
behaviour, while its description is a dead pile of paper.

Systems made by means of TIMe (and by means of many other methods) are produced
by making descriptions in a variety of languages and notations. These descriptions pre-
scribe how systems should be generated by having computers and similar equipment
(platforms) execute these descriptions.

Systems consist of objects. In order to describe them, classes of objects are defined and
described. In short, methods consist of approaches, guidelines and techniques for iden-
tifying and describing classes of objects.

With the advice “Just find the objects
(they are there to pick) and you will
have the structure of your system”, the
development group at Sesam Sesam
imagined the picture below. This is of
course oversimplified, but in fact most
methods they consulted advocated no
more structuring of systems than this.
This had to do with the fact that most
object oriented languages support only
a flat structure of objects with relations
- aggregation is just a special relation
between objects.

The process of finding the objects (or
rather classes) was driven by the devel-
opers, but management had learned that
OO was the best way to model the real
world.
The people that were involved with this
real world were the market people and
the people responsible for customer so-
lutions. They were therefore brought
into the process and asked to contribute

to the object modelling.
It turned out, how-
ever, that these
people were so
heavily stuck in
the(ir) real world
that they could only
think in terms of re-
quired (or desired)
properties of the
system as such (in
terms of functions, list of functions, fea-
tures, requirements, etc.). They had the
picture of a system as illustrated above,
that is a list of services.
Some of these services were defined on
the basis of use cases. With these two
very different perspectives on a system,
it was no surprise that finding the ob-
jects turned out to be finding the “de-
sign/implementation” objects, and that
properties were not taken into account.
Finding objects by functional decompo-
sition was, correctly, regarded as a bad
thing, and was not considered at all. So
where had all the properties gone in this
new object oriented way?

access
point

panel access
zone

. . .

change PIN code
.
.
block access
point
.
accept/reject
users
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1420 -

TIMe Essentials
Introduction

TIMe
TIMe Report
Properties
and objects

TIMe has the two dimensions properties and objects as integral parts of the method.

Systems
consist of
objects.
Objects and
systems
have
properties

A system consists of a set of objects. Objects are described by:

• object models, that model how a system or a set of related classes are composed from
objects, connections and relationships.

Systems and objects have properties (both provided and required). Properties are
described by:

• property models, that model the properties of a system or object without prescribing
a particular content or implementation.

Object models are constructive in the sense that they describe how an object is com-
posed from parts, and is the perspective of designers. Property models are not
constructive, but are used to characterise an object from the outside: behaviour proper-
ties, performance properties, maintenance properties, etc. This is the perspective
preferred by users and sales persons. It is also the main perspective in specifications.

TIMe provides some of the answers to the challenge of system development: to identify
objects and give them properties so that they contribute to the properties required of the
whole system, see Figure 5.

Figure 5: Matching objects and properties

Open figure

Properties A central idea in TIMe is that every object (and system) is characterised by provided
properties that can be matched against required properties (see Figure 6).

access panel access . . .

change PIN

objects

properties

block access

accept/reject
TIMe at a glance - 21 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

TIMe Essentials
Introduction

TIMe
TIMe Report
Figure 6: Required and provided properties

Open figure

Of special interest are interaction properties,
where a property involves the interaction
between the system and one or more users of
the system or other systems in the environ-
ment, or between objects in the system. The
“accept/reject user” property in Figure 5 is an
example of this: it involves the user entering
the card and code to the system, and the sys-
tem answering back with either OK or not OK
to enter. In Figure 7, part of this is specified in
MSC.

Figure 5 only indicates that access point
objects are involved, but during the design we
shall see that both panels and a central unit
will be involved.

Roles TIMe makes it possible to express property models without referring to specific objects.
Sometimes we need to specify properties without knowing the objects they shall be
associated with, and we may want several different objects to share the same properties
(e.g. a common interface). TIMe also makes it possible to compose the properties of an
object from parts described in different property models.

The notion of role makes this possible. Roles are used to represent objects in property
models, and we may compose the properties of an object from roles described in differ-
ent property models.

One of the instances in the MSC in Figure 7 is “AccessGranting”. This is not an object
of the object model, but a functional role. Behind this name can be hidden any structure
of interacting objects. At some point in the development it is necessary to associate the
functional role with an object of the object model. We call this synthesis.

TIMe uses three main categories of roles:

required properties provided properties

the system to be the system as

development

developed

Verification
& Validation

AccessGrantingUser

PIN

OK

MSC User_accepted

Figure 7: Simple interaction prop-
erty model
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1422 -

TIMe Essentials
Introduction

TIMe
TIMe Report
• service roles, which are the observable behaviour of an object in a given service;

• interface roles, which are the observable behaviour at given interfaces;

• association roles, which are the conceptual constraints on objects that participate in
associations (relationships).

Interface
and appli-
cation
given
aspects

TIMe makes a distinction between the (user) interface given aspects of objects, and
application given aspects of objects, see Figure 8.

In some cases these are two differ-
ent sets of objects, in other cases
they are just two different aspects of
objects - this is indicated by the
jagged line in Figure 8. The impor-
tant thing is to make the distinction
and be able to maintain it. The inter-
face may change e.g. with new
technology, while the application
objects providing the service properties of the system will typically have a longer life.

After having clarified that both object
and properties are supported, the group
at Sesam Sesam went for the TIMe
method and gave it a try. They were
successful in working together towards
a common object model. The market
people saw that their functions (proper-
ties) would be combined with objects,
and that object modelling was not the
only activity.
• “OK, we started by making an

object model of the current system
as it appears to its users in the real
world - now what do we have?”

• “We have the main user panel, and
we have the gates where users get
access to the system. We also have
the mandatory objects that control
the equipment, without those there
would not be any system.”

• “...”

This process was driven by a number of
use cases, so it was not surprising that
the group ended up with an object mod-
el where the dominant object was the
main user interface object of the sys-
tem. Most of the properties became as-
sociated with these objects.

interface given application given

Figure 8: Interface and application given
aspects

objecti objectj objectk
TIMe at a glance - 23 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

TIMe Essentials
Introduction

TIMe
TIMe Report
We shall later see that the application given aspects can be decomposed into system
given and domain given aspects.

Systems
belong to
domains
and are
used in
environ-
ments

TIMe makes a distinction between a domain, the systems within the domain, and the
environments in which the systems are used. While systems belong to a domain, in that
they handle the same types of phenomena, they exist and are used in an actual environ-
ment, see Figure 9. Accounting systems are different from access control systems in that
they belong to different domains. The example system in this introduction to TIMe
belongs to the access control domain, and that includes phenomena and concepts like
access points (where users get access or not), access zones (to which users would like to
get access), PIN codes, etc.

The domain models a part of the real world having similar needs and terminology where
a system instance may be a solution to some need. The domain is not specific to a par-
ticular system or system family, but rather to a market segment. It covers common
phenomena, concepts and processes that need to be supported irrespective of particular
system solutions.

Required properties derived from an actual use situation may come in addition to the
properties stemming from a domain. Properties required by the actual environment and
by its realization are very specific, while domain-given properties are often more gen-
eral and express idealized needs.

After having learned the distinction be-
tween interface specific and application
specific objects, the question was how
to get at some reasonable application
specific objects. The people at Sesam
Sesam were experts on their kind of
equipment and other technical systems
that were to be used, so they identified
objects that modelled this equipment
and other (technical) systems and de-
vices in the real world of the system.
The object model turned out to have,
not a black box, but a white hole at the
place where the system object model
was supposed to be. The problem was:
what kind objects should the core of the
system consist of; it was obvious that
there would be objects that handled the

user interface and the interface to other
systems, but apart from that??
• Says the TIMe consultant: “What

about a domain analysis”
• “What was the word again? And

what does it mean?” says the project
leader.

• “OK” - says the TIMe consultant -
“what is the system all about, irre-
spective of how it is realised, what is
the basic problem(s) that the
intended system is supposed to
solve; which kinds of entities and/or
events in the so-called real world or
in your imagination are handled by
the system?”
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1424 -

TIMe Essentials
Introduction

TIMe
TIMe Report
Domain,
interface
and system
given
aspects

Domain objects and their properties are not enough to provide the required properties of
the whole system. Many general properties can be provided by the domain given
objects, but some properties will often be required in addition. For instance properties
related to the operation and maintenance of a specific system.

This is reflected in the system reference model of TIMe: In addition to the domain and
interface given (aspects of) objects, the application given objects may have some aspects
that are special for this specific system, in addition to the general properties of domain
given objects.

The object model of a system is therefore divided into three aspects:

• the domain given aspects

• the system given aspects

After this distinction it turned out that
the project team at Sesam Sesam were
not only experts on the technical parts,
but they also knew what the system was
supposed to do. By taking one step

backwards and identifying entities and
events in the domain and representing
these by object classes, they arrived at
some domain specific classes that may
be candidates for objects in the system.

Figure 9: Domain, environment, and systems

Open figure

Domain

systems

domain
given

access-

access zone

user

PIN

Environment

accessgrant-

environ-
ment(e.g.user) (e.g.operator)

The access control domain has to do
with controlling access to access zones,
based on e.g. card codes and optional
PIN codes. Users present their cards
and PIN code at a number of access
points. Some access points may be
blocked even if a valid code is entered,
while other access points may log what
goes on at the site. Users may also
change their PIN code.
The environment of a specific access

control system may in addition to the
users have operators that have other re-
quirements to the system, e.g. getting
the status of access points.
General properties like access granting
come from an analysis the domain,
while properties that have to do with the
specific use of the system (e.g. how to
read cards and control doors) and oper-
ator requirements come from an analy-
sis of the environment.
TIMe at a glance - 25 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

TIMe Essentials
Introduction

TIMe
TIMe Report
• the interface given aspects.

These aspects may be whole objects or
just aspects of objects.

Domain given aspects come from an
analysis of the domain, interface given
aspects have to do with user interface,
interface to other systems or to con-
trolled equipment, while system given aspects are those aspects that arise because there
is a system, and that are specific for the system.

Domain given aspects have a larger potential for being reused in other systems in the
same domain than the system given aspects, and interface aspects may have to be mod-
ified when the interface technology changes.

The interface given aspects of the access control system are illustrated in Table 1 (p.26).

Abstract
and con-
crete
descrip-
tions

Descriptions suitable for execution by existing platforms contain a lot of detailed, con-
crete description elements (implementation details, platform specific details, etc.).
Descriptions suitable for system developers in their strive to match required properties
expressed by users, owners o.a. are preferably more abstract in the sense that they
describe systems in terms that reflect established concepts within a given domain.

TIMe achieves abstraction by supporting UML and MSC for analysis models and SDL
for design models. UML is a notation that enables informal, abstract object models,
MSC describes use cases and interaction between objects, and SDL supports abstract
descriptions that (by including concrete description elements) automatically may be
transformed to concrete implementations. The use of abstract descriptions is one of the

main ingredients in property oriented development.

interface
given

system
given

domain
given

objecti objectj objectk

Table 1: The three aspects of the access control system

interface given
aspects system given aspects domain given

aspects

• panel for entering
card code, PIN
and for displaying
messages to the
user

• door control,
unlocking the
door

• operator
requirements

• validation shall be
done by a central
unit

• backup
requirements

• access points

• access zones

• users

• access granting

• ...

In the access control system example,
the system is the collection of panels,
doors and program executions running
on some processor(s), while system de-
scriptions will include (abstract) over-
view descriptions of the total system

(including pure hardware components),
interface description of the hardware
components, SDL descriptions of some
of the program executions, and (con-
crete) Java or C++ code for the SDL run
time system and for hardware drivers.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1426 -

TIMe Essentials
Introduction

TIMe
TIMe Report
Abstract descriptions are organised in two main parts:

Application • an application part that describes what the user environment wants the system to do;

Infrastruc-
ture

• an infrastructure part that describes additional behaviour and supporting functional-
ity that needs consideration, e.g. in order to fully simulate its behaviour. This may e.g.
include support for distribution, exception handling etc.

The reason for this distinction is that systems within the same domain and in the same
family (see below) often will have the same infrastructure part, but different application
parts. Reuse of infrastructure is eased by keeping them separate, and application evolu-
tion is simplified.

Concrete models describe the implementation architecture. This is a high level descrip-
tion of the physical implementation. The purpose is to give a unified overview over the
implementation and to document the major implementation design decisions.

Each object has attributes and behaviour, is related to other objects, and is structured for
two different reasons:

Context 1. so that it models the corresponding domain entity and represents itself adequately to
the objects in the context of the object (for the system object this means the objects
in the environment);

Content 2. so that the object is completely defined with respect to its realization on the executing
platform. We will talk about the contents of the objects in contrast to its context, see
Figure 10.

Analysis will produce specifications of objects,
while design and implementation activities will pro-
duce designs of objects. In specifications the object
context and external properties are defined. Some
limited parts of the content may also be specified,
see Figure 10. In the design the remaining content is
defined. The specification of an object includes what
is needed to use the object - and that may be more
than just an interface specification.

When deciding upon what belongs to the domain
and what is more system specific, the main distinction is between the domain and single
systems within the domain. During development we often think in terms of making one
specific system. We talk about the “system” and the “domain”, and about e.g. “system
specification” and “system design”.

Families It is, however, fruitful to think in terms of families of systems and really make “system
family specifications” and “system family designs”. The idea is to focus development
and maintenance effort mainly on the families, in order to reduce the cost and time
needed to produce each particular instance, and to reduce the cost and time needed to
maintain and evolve the product base.

objects properties

context

content

Figure 10: Context/content

specification

design
TIMe at a glance - 27 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

TIMe Essentials
Introduction

TIMe
TIMe Report
A system family is a generalised system or set of component types (classes) that can be
configured and instantiated to fit into a suitable range of user environments. They rep-
resent the product base from which a company can make a business out of producing
and selling instances.

TIMe provides guidelines on how to make system families in addition to single systems.
Where practical, system types and classes will be defined from which complete system
instances may be generated.

Frame-
works

The notion of framework is one important mechanism for defining families of systems.
A family comprises more than just a type of system from which several system instances
can be generated. In addition a family includes e.g. the necessary documentation, man-
uals, etc. that make up a complete product.

At the heart of a system family lies the parts that are generated from an SDL design. This
may either be a complete SDL system, a set of SDL systems, or a set of general block
types and process types that can be (re)used for making systems.

Applica-
tion and
infrastruc-
ture

The SDL descriptions will be organised according to the distinction between application
and infrastructure. It is normally the case that different systems within a family will have
the same infrastructure but slightly different application parts, and when making differ-
ent systems it is desirable not to change or even consider the infrastructure part (besides
what it offers). A framework defines the composition of the infrastructure parts and
application parts in such a way that different systems can be made by only changing the
application parts.

The notion of framework is not special for TIMe. Within the field of object orientation,
a framework is well-known (“In object oriented systems, a set of classes that embodies
an abstract design for solutions to a number of related problems.” - Free On-line Dic-
tionary of Computing), and there are good examples of frameworks, e.g. window
systems. The use of frameworks supports the (re)use of whole designs and not only sin-
gle classes.

What is special for TIMe, however, is that this idea is adapted to SDL. A framework can
be defined as an SDL system type, and the different systems as instances of subtypes of
this system type. TIMe provides detailed guidelines for how to do this.

Languages
and nota-
tions of
TIMe

The main languages and notations of TIMe are UML, MSC and SDL. For readers not
familiar with these, please consult Object and Property Models - and the Languages for
describing them. The following is a very short introduction.

Says the people at Sesam Sesam: “We
have seen frameworks work for win-
dow systems and implemented in object

oriented programming languages, but
we guess frameworks are not for us,
now that we have chosen SDL...
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1428 -

TIMe Essentials
Introduction

TIMe
TIMe Report
UML for
analysis
and design
object
modelling

TIMe uses a UML for object modeling in terms of

• classes (with attributes and operations) representing application specific concepts,
with relations (associations) and communication links;

• inheritance between classes in order to express specialization of application
concepts;

• aggregation, that is objects defined by means of part objects.

TIMe defines its own approach to object orientation, and UML is used as a notation for
expressing this. UML matches the TIMe object orientation better than OMT.

Figure 11: UML for object modelling

Open figure

MSC
for specify-
ing
interaction
scenarios

TIMe uses MSC as its basic notation for property modeling. MSC highlights interaction
between instances based on messages. Instances may represent objects from some
object model or just roles played by some objects. A message is asynchronous, the out-
put must come before the corresponding input. The events on the timeline of an instance
are strictly ordered, and the distance between events is not significant.

An MSC document consists of a set of MSCs. Different MSCs within the same MSC
document are related by conditions. A condition is a label which signifies a global or
local state. Conditions can be used to mark situations where there are different alterna-
tive continuations, and they may describe looping.

Instances may be decomposed, in order to see the details of this in terms of further MSC
diagrams.

SDL
for design
and for
specifying
behaviour

SDL is the main language for design, and the only language for specifying behaviour.

An SDL system consists of a number of blocks, connected by channels. Each block may
either consist of a substructure of blocks, or of a set of processes connected by signal
routes.

AccessZone

AccessPoint User

classes
with rela-
tions and
communi-

cation links
Access Point

classes
may be
defined
as sub-
classes

AccessPoint
classes may
be defined by
means of ag-

gregation,
that is con-

sisting of ob-
jects of other

classes

Panel

Door

User

class

relation

communication

superclass subclass

part-object

Controller

Access Point

Access Point

Blocking

Logging

Central
Unit
TIMe at a glance - 29 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

TIMe Essentials
Introduction

TIMe
TIMe Report
Processes execute concurrently, communicate by sending signals (non-synchronized),
and have their behaviour described in Finite State Machines extended with variables,
procedures and transitions.

SDL may define types and subtypes of systems, blocks and processes.

Figure 12: MSC for interaction properties

Open figure

User AC System

Code

OK

msc User_acceptedinteraction
between
instances

for specify-
ing use
cases

submsc de-
scribing a de-
composition of
one of the in-
stances in the
superior msc,
e.g. for design

purposes

Panel Controller

Code

OK

submsc AC System

Unlock

Card out

Central Unit

Code
Code

OK

OK Synch

Unlock
final
condition

Idle
initial
condition

Door unlocked

door

Lock

msc Unlocked_timeout
User

Door unlocked

AC System

Idle

alt.1

msc Unlocked_reset

door

Opened

Push door

Closed

Lock

User

Door unlocked

AC System

Idle

alt.2

decomposition
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1430 -

TIMe Essentials
Introduction

TIMe
TIMe Report
Figure 13: SDL for design and specification of behaviour

Open figure

SYSTEM AccessControl 1(1)

CentralUnit
CE

C

[(inp)]

[(outp)] [(validity)]

[Code]

AccessPoint

AP(100):
AccessPoint

e C

e

[(inp)]

[(outp)]

VIRTUALBLOCK TYPE AccessPoint 1(1)

Panel Door

[(validity)]

[code] [opened,
closed]

[open,
close]

[(inp)]

[(outp)]

[(validity)] [Code]

P1

CE

CU

D

C

[(validity)]

[Code]

apc:
Controller

P D

U

Controller

Validation

Idle

Code

Code(cid,PIN)
VIA U

Validation

VIRTUAL

OK
TO cur_panel

Idle

cur_panel :=
SENDER

unlockDoor

unlockDoor

VIRTUAL

NOK
TO cur_panel

1(1)

[Code]

[(validity)]

[opened,closed]

[open,close]

[(validity)]

[Code]
P D U

VIRTUAL PROCESS

Idle

NOKOK(cid,PIN)

An SDL system
consists of a num-
ber of blocks, pos-
sibly according to

block types. Blocks
are connected by

channels

blockblock
type

pro-

process type

start
state
procedure refer-

input

output

gates

gat channel with

signal route

procedure call
TIMe at a glance - 31 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Introduction

TIMe
TIMe Report
System Development Activities

The following overview of TIMe is structured according to system development activi-
ties, and the corresponding kinds of models and descriptions are introduced along with
the activities. In this overview emphasis is put on the activities leading to
implementation.

This chapter covers the following activities:

• Analysis (p-33)

- Domain analysis (p-34)

- Domain Statement: what is it all about (p-36)

- Domain object model: modeling the established domain concepts (p-37)

- Dictionary: not just a data dictionary (p-39)

- Requirements analysis (p-42)

- Application specification (p-45)

- Architecture specification (p-50)

- Framework/Infrastructure specification (p-51)

• Design (p-53)

- Application Design: where the real functionality is designed (p-54)

- Architecture Design: choice of implementation platform (p-63)

- Framework Design: from Infrastructure to Framework (p-64)

• Implementation (p-71)

• Instantiation (p-71)

Guidelines on Object and Property Modeling are provided in a separate chapter (Object
and Property Models - and the Languages for describing them). These are modeling
techniques that are part of many activities and therefore most conveniently covered in
one place. That chapter includes guidelines on the matching of properties and objects,
and on the transition from UML to SDL object models.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1432 -

System Development Activities
Analysis

TIMe
TIMe Report
Figure 14: The main activities in TIMe

Open figure

Analysis
The objectives of analysis are to understand the domain and what users and other stake
holders want to achieve, i.e. their needs, to find improvements to existing systems, or to
plan new product families that will give valuable improvement and thus create business
in the future.

Domain descriptions

System Family descriptions

Instance descriptions

State-
ment

Dictio-
nary

Auxiliary

State-
ment

 Dictio-
nary

Auxiliary

Concrete
system

Implementa-
tion

Instance
models

Domain
models

Specifi-
cations

Designs

Analysing

Analysing domain

Analysing requirements

Designing

Designing application

Designing framework

Designing architecture

Implementing

Instantiating

Configuring

Building

Testing

Application

Application

Framework

Framework

Architecture

Architecture

Implemen-
tations
TIMe at a glance - 33 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Analysis

TIMe
TIMe Report
Figure 15: Analysing

Open figure

Product
Planning

Product planning is another word for analysis. Product planning is a strategic process at
the company level. Its main goal is to consider needs existing in the market and plan new
products or enhancement to existing products. Few tasks are more critical to the success
of a company than its product planning. Product development is a process which pro-
duces the new products or product enhancements that are planned.

Why
domain
descrip-
tions?

At the product planning level, domain descriptions are used to collect and organize
domain knowledge in a way that will enable product development to work more
efficiently.

At the product level, product families will enable faster and more cost effective config-
uration and production of system instances, while common components will be used to
develop product families more efficiently.

Product planning consists of two main activities: Domain analysis and requirements
analysis. The task of the latter is to plan what parts of a domain to support by a new sys-
tem family and to specify its required properties.

Domain analysis
The first analysis will be an analysis of the domain. This includes identifying which phe-
nomena and concepts (like access zones, access points) are part of the domain, with
focus on concepts. The result is represented by two domain models:

Domain
Descriptions

Market
people, us-
ers, design-
ers, domain

experts

System
studies

 Family
descriptions

Analysing
solutions

Specifying

Own systems,
competing
systems

Business plan,
product strategy

Analysing

Analysing
domain

Analysing
requirements

 Family
descriptions
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1434 -

System Development Activities
Analysis

TIMe
TIMe Report
Domain
object
model in
UML

• A domain object model, that is a collection of classes with attributes, relations and
communication connections that describe the general concepts of the domain, with-
out going into details needed for design and implementation.

- UML is the main notation used for this kind of modeling, but if it for some reason
should be important to describe some general states and transitions, then SDL is
used.

Domain
property
model in
MSC

• A domain property model, that is a description of properties of domain object classes,
and of roles.

- Domain objects do not have to be just “data (passive) objects”, so properties may
involve interaction properties - they are described using MSC. Other kinds of
properties are described using natural text, e.g. organised in lists of required prop-
erties. If interaction properties are not obviously associated with objects from the
domain object model, we will say that they are associated with roles.

Two additional domain descriptions are recommended:

Dictionary • A dictionary, that is a list of terms with an explanation of their meaning, including
each of the elements of the domain object model. A dictionary is not just a data dic-
tionary, it also includes definitions of concepts that exhibit behaviour.

- Dictionaries are described by structured natural text.

Domain
statement

• A domain statement, that is a concise description of the domain with focus on stake
holders and their needs, the essential concepts, functions and work processes, rules
and principles.

- It is normally sufficient to express the domain statement informally using natural
language and drawings, but one should try to be as clear and precise as possible.

These models and descriptions represent the understanding of the domain common to
users, owners and developers of systems in the domain, see Figure 16.
TIMe at a glance - 35 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Analysis

TIMe
TIMe Report
Domain Statement: what is it all about

The domain statement leads to the very first understanding of what the domain is all
about. It helps to clarify needs and to understand the real purpose of systems in the
domain. It also serves as an introduction to the other domain descriptions.

The domain statement can often be based on existing prose descriptions. There may be
descriptions of earlier systems, there may be textbooks on the subject and there may be
informal statements about the system.

Domain
Statement

By considering similar systems on the market, by analysing the needs and by consulting
domain and market experts, the short Domain Statement V1 (p-37) is written. It seeks
to describe what is special for this domain in contrast to other domains, and is used to
guide what to include and not in systems.

Figure 16: Domain Analysis Models and Descriptions for the
Access Control Domain

Open figure

Domain

domain object
model

access-

access zone

user

PIN
accessgrant-

dictionary

access
point: ...
access
zone: ...
user: ...

domain property
model

AccessZone

AccessPoint User

User

PIN
OK

Acce

domain statement

Access control has to
do with controlling
the access of users to
access zones. ...
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1436 -

System Development Activities
Analysis

TIMe
TIMe Report
Figure 17: Domain Statement V1

Open figure

Domain object model: modeling the established domain concepts

Classes and
objects

A domain object model describes the domain from an object oriented perspective. It
defines classes which represent concepts in the domain, and objects which represent
phenomena in the domain. It defines the attributes, the operations and the behaviour of
objects as well as associations and communication connections between objects.

Area of concern
Access control has to do with controlling the access of users to
access zones. Only a user with known identity and correct
access right shall be allowed to enter into an access zone. Other
users shall be denied access.

Stakeholders

Users of the system, those responsible for the security of the
access zones.

Services

The user will enter an access zone through an access point.

The authentication of a user shall be established by some
means for secret personal identification (code). The authorisa-
tion is based upon the user identity and access rights associated
with the user.

A supervisor will have the ability to insert new users in the
system.

Users shall be able to change their secret code.

Helpers

We assume some central means to establish access rights
automatically.
TIMe at a glance - 37 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Analysis

TIMe
TIMe Report
With this definition of domain object model, it is rather straight forward to identify the
domain specific objects. In our example it turned out that some of these were really
“active objects” (e.g. User and AccessPoint in Figure 18). Note that this object model
comes about when considering only classes, relations and connections. If only consid-
ering e.g Use Cases, AccessPoint may not have turned up, but rather a role like
AccessGranting.

• The Sesam Sesam project leader
tries: “Aha, so domain modelling
resembles the way database applica-
tions are made: we make a data
object model for the domain, that is
the objects that the systems in the
domain must know about, and then
we make different database applica-
tions with this data object model as a
basis.”

• “That´s right, we know in fact that
we have to keep a database of what
users have ordered, so that they can
be billed, so that statistics can be pro-
duced, etc.” says a project member.

• “OK, this seems to be a fairly simple
distinction: “passive” data objects
for the domain and then more
“active” “controlling” application
objects. As far as I remember this is

also the main distinction in the Use
Case approach of ObjectOry” says
another.

• Says the TIMe consultant: “This will
work as a starting point, and for some
systems this will do, but for most
domains we do not have to restrict
ourselves to regard the domain spe-
cific objects as data objects only: if
there are general properties that have
to be fulfilled by “active” objects
(that is objects with behaviour, with a
life-cycle and often concurrent with
other active objects), then these
objects obviously are domain
objects, and their classes will be used
for many systems in the domain. In
TIMe the dimensions domain-system
and active-passive are two different
dimensions - it is not so that domain
object are always passive and system
objects always active!”
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1438 -

System Development Activities
Analysis

TIMe
TIMe Report
Dictionary: not just a data dictionary

The objective of the dictionary is to define terminology and thereby enable precision in
communication between people involved. Terminology names the domain specific con-
cepts and defines their meaning.

An important set of concepts in the dictionary is the set of concepts that are covered by
the corresponding domain object model. There may also be phenomena, like e.g. access
granting, that will not be covered directly by a class in the object model, but by property
models involving more than one class of objects.

It is important that not only “data” concepts are included in the dictionary, but that typ-
ical “event”- or “action” concepts also are included - hence the name Dictionary and not
Data Dictionary.

Figure 18: The access control domain

Open figure

may enterbounded by

AccessZone

AccessPoint User

may enter
through*

1..*

*

1

11

In this part of
the domain ob-
ject model it is
described that
a User may en-
ter more than
one Access-
Zone, and may
therefore use
more than one
AccessPoint.
There may be
more than one
point at which
a given Ac-
cessZone can

be entered and exited.
The User and AccessPoint objects will be active objects, while Access-
Zone objects are passive. This is indicated by the communication con-
nection between AccessPoint and User.
The corresponding property model reflects that User and AccessPoint
interact. Note that User is the class of real Users, and not the class of
User objects eventually representing users within the system.

Figure 19: Attribute specification

Open figure

User

Name: string
Number: Integer

Access Zone

Name: string
Level: Integer

Access Point

Name: string
Number: Integer
Access: key type
 TIMe version 4.0 © SINTEF - Modified: 1999-07-14
 TIMe at a glance - 39

System Development Activities
Analysis

TIMe
TIMe Report
Figure 20: Domain specific Dictionary

Open figure

Domain property model: modeling the needs

A Domain Property Model is used to describe the problem domain from the Property
perspective. It includes functional and non-functional properties.

Functional properties are considered as projections of object behaviour, and are
described using text, role structures and MSC.

Important properties for the systems that TIMe is intended for are properties of interac-
tion between parts of the systems and parts of the environment. Some methods
recommend pure role modeling for this purpose: that is all instances involved in inter-
action scenarios are roles played by some objects that will be found during design. Other
methods (like UML) use the object model as the basis for interaction scenarios, and
therefore only have objects as instances in interaction scenarios, never roles.

TIMe supports a mixture: if interaction properties are obviously associated with objects
already identified in the object model, then the property models describe the properties
of these. On the other hand, if the object model has not even been identified, it is still
possible to make interaction scenarios only involving roles. During design, roles will be
assigned to objects. The relationships between objects and properties are illustrated in
Figure 21.

Access point A point of access into an access zone.
Access zone A physical or logical zone guarded by a set of access

points.
Authentication To establish the identity of a user.
Authorisation To establish the right of a user to enter an access

zone.
Authorizer The entitity which determines authentication and

authorisation.
PIN A personal identification means.
User A person with known identity with

authorisation to enter specific access zones.
User name A user name.
Access Granting The role of granting (or not granting) a user access.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1440 -

System Development Activities
Analysis

TIMe
TIMe Report
Figure 21: Domain Models

Open figure

Role
structures

Text is used to give a textual explanation of a service or interface. Role structures are
UML instance diagrams that represent the roles of the service or the interface. The
objects in role structure diagrams can be considered as anonymous objects. They will be
related to object model objects by role association links, and to the instances in the ser-
vice MSCs through the same name.

When the system is designed, the domain property models will also be valid property
models of the corresponding (domain given) system objects. Properties belonging to the
domain will be candidates for properties of several systems in the domain.

Domain object models

Actor-1 view

Actor-2 view

Domain property models

Service-a

MSC Service-a1

Plays role of

Plays role of

role
structure

Text

Interface-x

MSC Interface-x1
role
structure

Text
TIMe at a glance - 41 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Analysis

TIMe
TIMe Report
MSC does not take any stand as to what the instances are - an instance just represents
one sequence of events (sending and receiving messages).

Requirements analysis
This activity produces requirement specifications in terms of context specifications in
UML or SDL (depending on the desired degree of formality and on the starting point)
eventually supplemented by content specification where this is known and needed in
order to fully specify requirements. Corresponding property specifications are
produced.

Figure 22: MSC User_accepted

Open figure

AccessGrantingUser

PIN

OK

MSC User_accepted

We know that there will
be AccessPoints and that
the Users will interact
with these in order to enter
an AccessZone, but it is
not obvious if Access-
Points are the objects that
will grant access.
If it is important to ex-
press this uncertainty,
then we define Access-
Granting as a role - in oth-
er parts of the
development we will as-
sign this role to one or
more objects, and proba-
bly AccessPoint will be
one of them.

During domain analysis, Sesam Sesam
used the set of rules/guidelines being
part of TIMe. The following is a list of
some of these:
• As a start, consider how things are

done today and describe the existing
domain. Then consider how it may
be improved and develop a new
domain description.

• Focus on abstract objects that are
essentially needed and avoid system
specific solutions. This does not
exclude elements that eventually
will be part of systems. The essential
thing is that the Problem Domain

generalises over system specific
solutions. Classes of objects coming
from an analysis of the Problem
Domain are candidates for reuse
across systems, but reuse requires at
least one use.

• For each stake holder, describe their
needs for services and interfaces.

• Represent every actor as a type with
context in the object model and
describe its services in property
models.

• When systems are defined classify
the entities into interface, system,
and domain specific parts.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1442 -

System Development Activities
Analysis

TIMe
TIMe Report
The activity will specify the properties of the systems down to a level where the system
can be evaluated and compared to other possible solutions. It studies different system
alternatives, and it makes requirements on how systems shall be instantiated and how
they may evolve.

Figure 23: Analysing requirements

Open figure

In addition it updates the Dictionary (p-35) and Domain statement (p-35) from the
domain analysis with elements that have to do with the introduction of a specific system
(or family of systems) in this domain.

Central to this activity is the notion of specification, defined thus:

Domain
Descriptions

Market
persons,

users, de-
velopers,

production
and sales
persons

Family
auxiliary

Family
statement

Application
specification

Own systems,
competing systems

Business plan,
product strategy

Analysing requirements

Analysing
solutions

Developing
family statement

Developing
family dictionary

Specifying
framework

Specifying
application

Specifying
architecture

Specifying
methods

Family
dictionary

Framework
specification

Architecture
specification

Specifying

System
studies
TIMe at a glance - 43 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Analysis

TIMe
TIMe Report
- A specification covers those aspects of a model that are relevant for its external rep-
resentation and use. The context part is often sufficient as a specification, but if parts
of the content are important it may be included in the specification. Specifications are
associated with the abstractions they belong to.

Require-
ments
specifica-
tion

A requirements specification is a document which is normally produced early in a devel-
opment project and used as a contract for the design work. It will contain specifications
and other items of relevance at that stage. After delivery we are interested in the pro-
vided properties (i.e. specifications) of the system, and are not interested in the historic
document. TIMe unites these two aspects in the single term specification.

Specifica-
tions vs.
design

Specifications contain the specification parts of Application, Framework and Architec-
ture models (see Figure "Context/content").

Systems are
part of an
actual use
environ-
ment

Requirements are requirements to systems.
Systems within the same domain will have in
common that they handle the same kinds of
phenomena. All systems within the access
control domain will handle access zones,
access points, and users that want to get access
to access zones.

A specific system may in addition have prop-
erties that are needed because the system will
have other categories of users, e.g. operators
that have other requirements to the system, or
an owner that e.g. wants statistics on the traf-
fic. A specific system may also have
interfaces to other systems in the
environment.

Guidelines for
requirements
analysis
• Make a con-

text diagram
with the sys-
tem as focus
and the sys-
tem
environment
detailed. Only
show parts of
the environ-
ment that are
related to the
system.

• Sketch or out-
line the
system struc-
ture using
UML.

• Identify the
parts that are
subject to
requirements.

• Use open
aggregation to
illustrate how
entities in the
environment
relates and are
connected
with parts of
the system.

• Define the
interface
behaviour of
each role in
the system
and in the
environment.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1444 -

System Development Activities
Analysis

TIMe
TIMe Report
Application specification

When analysing and designing a system within a given domain, the domain models will
be of less use if the method does provide guidelines on how they contribute to the system
design. In addition to the properties identified as part of domain analysis, there will be
required properties that are specific for this system in its use environment. It is an expe-
rience that interface properties should be treated separately.

TIMe therefore has a system reference model, where these three aspects are treated as
separate issues and contribute differently to the system design, see Figure 25.

Figure 24: System and its environment

system

users
(from the domain)

users
(from the
environment)

other systems

Access
Control
System

When an access control system
is considered in its use environ-
ment, then there will both be us-
ers from the domain and users
of the actual system (operator).
The “domain users” will have
their requirements to the system
(and interface at the access
points), while the operators will

have other requirements and
have access to quite other parts
and quite different properties of
the system.
It is also decided that doors are
outside the system, and as such
will be processes that shall be
controlled by the system.

e.g. database
log systems

e.g. persons trying to
enter access zones

e.g. operator

controlled
processes
e.g. the doors
TIMe at a glance - 45 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Analysis

TIMe
TIMe Report
The domain models contribute to the domain given aspects of the system. These aspects
will be more stable than the interface and system given aspects, and the domain given
classes used for design will have a greater potential than the other classes for being
(re)used in other systems in the same domain. That’s the motivation for this distinction.

It is recommended to use:

• UML with the system represented by a central class and connections represented by
special relations, or

• SDL with the system represented by a block type with gates (see Figure 26).

The choice depends on how close to UML one desires to be or how formal the context
specification shall be. If SDL is chosen, then really only the connections can be shown,
while UML can also show the relations (connections are special relations).

interface
given

system
given

domain
given

elements of
domain models

requirements from
use environment

requirements to inter-
face to users, con-
trolled processes and
other systems

system

Figure 25: Contributions to the different aspects of a system

objecti objectj objectk

Figure 26: Context models

Access Zone

AC-SystemUser

Card

Opera

Door

tor

Access Zone

User

Card

Opera

Door

tor

UML

SDL

block type
AC-System

g1 g2

g3
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1446 -

System Development Activities
Analysis

TIMe
TIMe Report
Such context models are matched with corresponding Use Cases (also called Interaction
Scenarios) in MSC, where each connection corresponds to one or more MSC diagrams
(see Figure 1 and Figure 28).

Requirements analysis produces a (requirements) specification for the system to be
designed. It may be so that the system has an inherent structure, and that this has to spec-
ified in order to get the specification right. In that case, the specification includes a
structuring of the system by means of “real aggregation”, and the environment commu-
nicates with the parts of the system (see Figure 29).

Figure 1: Property model from domain:
MSC User_not_accepted by system

Open figure

AC-SystemUser

Code

NOK

MSC User_not_accepted
One of the Use Cases
between the domain
given User and the
system is the one
where a user is not ac-
cepted, because the
code is not OK. Dur-
ing system analysis it
is decided that this
shall be performed by
the AC-system.

Figure 28: System specific property: Block-
ing Status provided by system and initiated

by Operator

Open figure

AC-system

BlockingStatus

BlockingReport

MSC ProvidingBlockingStatus

Operator

From the actual use
environment we
know that the sys-
tems will have op-
erators, and that
they will ask for the
blocking status of
access points. This
was not part of the
domain model.
TIMe at a glance - 47 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Analysis

TIMe
TIMe Report
When specifications include a structuring like this, the corresponding property models
must be changed correspondingly, so that User does not only interact with AC-system
but with AccessPoint, and Operator not with AC-System but with CentralUnit.

Figure 29: System Context/Design Outline

Open figure

m=100

may
accept

1

AC-System

User

m
Access
Point

may use

Autho-
rizerCentral

Unit
* 1

*

From the Domain Object
Model we get the Access-
Point object. The system
will provide its services at
a number of Access Points,
but validation shall be cen-
tralised, i.e. there will be a
central unit that takes care
of the validation, while the

access points are merely
User servers.
This is reflected in a sys-
tem context diagram where
the system object contains
a set of AccessPoint ob-
jects and one CentralUnit
object.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1448 -

System Development Activities
Analysis

TIMe
TIMe Report
System analysis may also consider the interface specific properties and specify corre-
sponding context/content models. When the system specification has included parts of
the system (as with AccessPoint and CentralUnit in Figure 29), then the interface spec-
ification may take that into account. In Figure 30 it has been decided that the interface
of AccessPoint shall be to a panel and to a door, and the corresponding objects of
AccessPoint have been identified.

Application Specification is a
crucial part of the method. The
following lists the recommended
activities and guidelines for this
part, some of which have been il-
lustrated above:
• Decide on what parts of the

domain that shall be inside the
system and what parts shall be
in the environment, and what
shall not be considered at all.

• Represent the system type as
one entity, and show its inter-
connections to entity sets in
the environment. Specify con-
straints and variability of the
entity sets.

• Make a (passive) object
model representing the enti-
ties in the environment that
the system family shall know.

• Describe the domain specific
services in terms of service
lists, role diagrams and Use
Cases (in MSC). For each of
the active object types in the
environment, make a context
diagram and describe its
active environment in terms
of association roles. Make a
function list and specify the
corresponding service behav-
iour using roles and MSC. If
possible or relevant, describe
association role behaviours as
completely as possible.

• Consider the system specific
parts. Identify any system
specific services and system
specific objects (active or pas-
sive) that are needed.

• Add system specific entities
to the active and passive
environment.
TIMe at a glance - 49 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Analysis

TIMe
TIMe Report
Architecture specification

In addition to considering the application specific properties of a system, system analy-
sis may also take requirements on Platform into consideration and specify these.
Platform has to do with non-functional requirements to the implementation, e.g. the
choice of technology, implementation principles, etc.

While the application specification is an abstract description which does not take phys-
ical aspects into account, the Implementation is considered as a concrete description. A
central idea in the methodology is to describe abstract systems in a way that can be
understood and validated without knowing how they are implemented.

The concrete description is composed from real hardware and executable software. The
concrete system will have an Application part where we find the implementation of the
abstract system, and a support part containing additional functionality needed to execute
the application. It will often be distributed and have additional support for internal com-
munication, see Figure 31.

Figure 30: Introducing PanelServer and DoorServer as
part of AccessPoint

Open figure

AccessPoint

UserServerUser

Panel Panel
Server

Door
Server

Door

Domain given

Interface given

Considering interface as-
pects in system analysis:
It is decided that the code
shall be entered through a
panel and that the resulting
response (OK or NotOK)

shall be presented at the
same panel. Correspond-
ingly, the actual controlling
of the door is singled out as
an interface specific part of
AccessPoint.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1450 -

System Development Activities
Analysis

TIMe
TIMe Report
Figure 31: Concrete system reference model

Open figure

For the access control system, Architecture Specification amounts to specifying e.g. that
plastic cards shall be the means for identification, and that implementation code for the
software parts shall be generated from SDL designs and based on an existing runtime
system.

Framework/Infrastructure specification

Consideration of issues like distribution, systems management, etc., that is behaviour
that has to be part of the system but does not contribute to the services it provides, pro-
duces the Infrastructure specification.

The application Framework is an abstract system which takes into account concrete sys-
tem issues such as distribution and error handling. It consists of a distributed
Application part, and an Infrastructure part.

TIMe recommends developing a refined and restructured, complete functional specifi-
cation reflecting the concrete system and the implementation dependent requirements,
and turning this into a Framework specification, as illustrated in Figure 32.

Application SW

Support SW

HW

I S D

Infrastructure

Application SW

Support SW

HW

I S D

Infrastructure
TIMe at a glance - 51 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Analysis

TIMe
TIMe Report
Figure 32: Application framework reference model

Open figure

If the Infrastructure specification can be constructed so that it forms a Framework for
systems with the same Infrastructure, but with varying Application part, then this is
done. The application specification is changed accordingly. The idea is that if a system
can be made as an instance of a Framework, with much of the general properties of the
Framework isolated in the Infrastructure, then the Framework will have a potential for
being reused as a design.

In Object and Property Models - and the Languages for describing them we illustrate the
access control system where the Infrastructure and Platform issues have been
considered.

Application

Application

InfrastructureInfrastructure

InfrastructureInfrastructure

Infra-
structure

redefinable

configurable

physical node
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1452 -

System Development Activities
Design

TIMe
TIMe Report
For the access control system the fact that validation shall be performed by central com-
puter is an infrastructure issue, like the possibility of distribution of validation to the
access points, with additional protocols as an implication.

In an initial development the infrastructure aspect may not be obvious. Frameworks will
often come as a result of a (successful) initial development, which is to be used as a basis
for a new system. If e.g. distribution has been considered and isolated in an infrastruc-
ture part, the next system with the same infrastructure but with a different application
part can reuse this framework.

Design

Design
object
models in
SDL

This activity produces design object models primarily in SDL. Some parts of the design
have to do with the required properties (Application design), another part of the design
has to do with Architecture specific issues (including non-functional properties in con-
trast to the functional properties of application design), and a third part combines these
two into a Framework for instantiation of specific systems with the same infrastructure.

Design is a creative process. One thing is that the system design model will be in SDL,
while analysis models may be in UML. Another thing is that design may require a
restructuring, and will certainly add details and precision.

TIMe contains guidelines on how to transform UML models into SDL models, and these
are more or less automatic. It is a point, however, that they are not quite automatic - if
they were there would be no need for the UML models (or for the SDL models). The

Table 2: Application, framework and architecture aspects for the
access control system

application
specification

framework/
infrastructure
specification

architecture
specification

• system object,
possibly con-
taining
accesspoint
and cen-
tralunit, with
context
specification
including sig-
nals like Code,
OK, NotOK,
and MSCs as a
specification
of use cases.

• Validation
shall be per-
formed by
central
computer.

• Possibly distri-
bution of
validation to
the access-
points, with
additional pro-
tocols as an
implication

• Plastic cards as the
means for
identification.

• Code for the soft-
ware parts shall be
generated from SDL
designs and based on
existing runtime sys-
tem for the central
computer and tai-
lored run time
systems for the code
in the access points.
TIMe at a glance - 53 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
interesting transformation is to take the system requirements, identify the system objects
and assign attributes and behaviour to these object so that required properties are
fulfilled.

Specifications contain the specification parts of Application, Framework and Architec-
ture models. These are related to the design parts, as indicated in Figure 33.

Figure 33: Specification and design related

Open figure

The main design language is SDL, but in cases where the system will be a combination
of SDL components and components created e.g. from an UML model, or using an inter-
face construction tool, the main design may be in UML.

There is some help to get in this main part of design activity. As mentioned above, the
system analysis produces specifications on three levels, and the system design follows
these specification levels:

• Application Design: where the real functionality is designed (p-54)

• Framework Design: from Infrastructure to Framework (p-64)

• Architecture Design: choice of implementation platform (p-63).

Application Design: where the real functionality is designed
Application Design produces context and content designs (in terms of structure and
behaviour) for the system type and/or for types being used in the system:

Application
specification

Framework
specification

Specification part of models

Architecture
spec

Application
design

Framework
design

Design part of models

Architecture
design

Application
models

Framework
models

Architecture
models
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1454 -

System Development Activities
Design

TIMe
TIMe Report
- Application context, that is a context model for the type, i.e. a diagram with the type
as a single entity. It specifies the environment, the interfaces and the knowledge of
the type as well as external types which are used as components. It also specifies the
context properties, i.e. services, and describes all objects in the environment.

- Application structure applies to types that consist of object aggregates, defining the
content as a structure of components.

- Application behaviour applies to types that have a behaviour of their own, e.g. SDL
processes.

The first purpose of an application design model is to describe the system behaviour at
an abstraction level, where it can be understood and analyzed independently of a partic-
ular implementation. This is done in terms of both an object and a property model.

The second purpose is to be a firm foundation for designing an optimum implementation
satisfying both the functional and non-functional requirements.

Application design starts from the application context and the required properties. New
objects may be introduced during design, and these are also subject to the context/con-
tent distinction.

The application content may introduce new component types. In general the component
types and application types are designed in the same way:

• context design;

• content design: this is either behaviour design or content design.

From
domain
objects to
design
objects

As mentioned above, some domain objects are candidates for design objects. In Figure
34 it is indicated that AccessPoint may become a block type in the SDL design.

Another source of design objects comes from mirroring the entities in the environment
of the system. Considering the system specific aspects or properties will either add new
classes to the set of classes from the domain object model, it will add system specific
properties to domain object model classes, or it will make new subclasses to the domain
model classes. This may give the application specific objects two aspects: domain given

objecti objectj

Domain

Domain object
model

Access Point

Access
Point

block type
AccessPointg

Figure 34: From domain objects to design objects

Example
TIMe at a glance - 55 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
and system given. The pure domain model classes can be used in all systems in the
domain, while the system specific (sub)classes can only be used in systems with prop-
erties specific for this family of systems.

Subsystems
or not, and
when

In some cases it is obvious that the system shall be decomposed into subsystems, or that
objects in the system have a content structure. In that case this is directly supported by
the SDL block concept. An SDL system simply consists of a number of blocks con-
nected by communication paths, so-called channels, and the blocks may in turn either
contain a new substructure of blocks or sets of processes.

TIMe establishes rules for good subsystem design that are readily supported by SDL.
Subsystems may either come as reflecting an inherent structure of the system, as e.g. the
division into central unit and a number of access points, or they may come from a pure
functional decomposition.

TIMe advocates to start the subsystem decomposition from an inherent structure and
then introduce new subsystems if it turns out that required properties cannot be obtained
by assigning behaviour to already identified subsystems.

Inspiration
from the
environ-
ment

“Finding” the content objects may in some cases appear as “magic” and may require
some experience from good design for similar systems. However, once the environment
is well defined, the task is simpler. With a slight adaptation of an old saying: Tell me
who is in your environment and I will tell you who you are (i.e. what your content is).

• “Is this not making things compli-
cated? We want all classes we make
to be general enough to be used in
other systems anyway, so why not
just get started and make some
classes!”

• Says TIMe: “It is a common misun-
derstanding that all classes are
equally (or a priori) reusable, while
the fact is that many classes defined
for the purpose of a system are
defined within that context and will
only work in that context. It takes a

lot to make a class generally usable.
The TIMe recommendation is there-
fore that objects (and their classes)
are mainly used for the purpose of
structuring systems, and that classes
in the first place should be defined
with this purpose in mind. So, when
making a domain object model,
include only the obvious general
objects and the obvious general
properties - it is no mistake if the
domain model starts out being
small”.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1456 -

System Development Activities
Design

TIMe
TIMe Report
In addition to guidelines like this, the complete TIMe contains rules for good design in
SDL (e.g. when to use concurrent processes, purpose of block substructuring, redesign-
ing by generalisation, etc.).

Try this sequence of activities to ensure that all roles supposed to be played by the
system are provided by some objects in the system:
• Mirror the environment behaviour: Identify the objects in the environment, and describe the

corresponding types with association roles. For each association role directly interacting with an envi-
ronment object through a static one-to-one connection, assign an actor object in the system.

• Define the corresponding object types and their association roles.
• If possible, assign the association roles remaining to be bound to objects already defined, otherwise intro-

duce new objects.
• Introduce switched communication where n-to-m communication is needed.

• Continue until all roles have been bound to actors. This may be an iterative process by
which new actor objects are found.

• During these activities, make MSCs detailing the internal interactions (between
the newly design objects) and check that the structure will give effective behav-
iour definitions.
TIMe at a glance - 57 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
Figure 35: Application design in SDL

Open figure

SYSTEM AccessControl 1(1)

CentralUnit

CE

C[(inp)][(outp)]

[(validity)] [Code]

AccessPoint

AP(100):
AccessPoint

e c

/* Signal definitions for AccessPoint communication */
SIGNAL
eject-card, lock, unlock
input-card, isOpen, isClosed
display,
keys;
SIGNAL Code(integer,integer);
SIGNAL OK,NOK,ERR ;

SIGNALLIST validity = OK, NOK, ERR ;
SIGNALLIST outp = EjectCard, display;
SIGNALLIST inp = InputCard, keys ;

/* AccessPoint
/* ENV
/* Display
/* ENV
/* AccessPoint
/* CentralUnit

TO ENV */
TO AccessPoint*/
TO ENV */
TO Keyboard */
TO CentralUnit */
TO AccessPoint */

CD

d

[isOpen,isClosed]

[lock,unlock]

From the system analysis we get
the specification that the system
shall be structured into a set of
AccessPoints and a CentralUnit.
We also know that AccessPoint

shall both handle the panel, the
door and communication with
the CentralUnit (that is three
processes), so we decide to have
AccessPoint as blocks, because
blocks may contain processes.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1458 -

System Development Activities
Design

TIMe
TIMe Report
Object
(behav-
iour) design

If system content decomposition in terms of subsystems is not obvious, TIMe advocates
to design the object types first. That is identify the attributes and behaviour that each
object shall have in order to fulfill the required properties.

For design in SDL, object behaviour design amounts to identifying the required pro-
cesses and specifying these by means of variables, procedures and behaviour in terms of
states and transitions. The context design of the class leads to gate definitions in the cor-
responding SDL type, while the property models are input to the combined behaviour of
the process.

In the object design, property models can be made more detailed and precise.

TIMe contains guidelines for how to come from a set of property models in terms of
MSC to the corresponding process type in SDL. A short description of these guidelines
are found in From MSC Property Models to SDL Object Models.

In the first round it is recommended to ignore the interface specific behaviour. We know
that AccessPoint will have a part that handles the user without considering how the card
code and the PIN are entered via the panel (UserServer in fig. 30 Introducing Pan-
elServer and DoorServer as part of AccessPoint (p-50)). From the MSCs between

At this point Sesam Sesam had con-
sulted some UML experts. They had al-
ready made a domain object model (in
UML) and used this as a basis for a first
system object model. They were now in
the position to do what really is the core
of the development: to specify the be-
haviour of the objects so that they to-
gether provide the required properties.
They had parts of the properties defined
by use cases and now they wanted to
specify the behaviour of the objects.
An obvious choice was to generate
skeleton code from the UML object
model and then provide the functional-
ity in C++ or Java, but problems were
reported to the TIMe consultant:
• “Some of these objects have intri-

cate behaviour and a lot of
interaction, so we wanted to specify

them as state machines where the
transitions are triggered by incom-
ing signals”

• “I guess you have used the State-
charts notation in UML” - says the
TIMe consultant.

• “Yes, but we also wanted code gen-
eration from the behaviour
specification, and that is not sup-
ported - the object model and the
behaviour model are not integrated”.

• “Ah” - says the TIMe consultant -
“then you are really looking for
SDL: most of the UML object model
can be represented in SDL (except
general associations, but aggrega-
tion and inheritance are supported).
Expressing the behaviour specified
in terms of Extended Finite State
Machines is an integrated part of
SDL.”
TIMe at a glance - 59 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
system objects we know that this part of AccessPoint shall also handle the communica-
tion with the CentralUnit, so we rename “UserServer” to the more neutral “Controller”,
see Figure 36.

Figure 36: Behaviour of Controller according to User Accepted & User Not
Accepted

Open figure

TO
CentralUnit

Validation

Idle

Code(cid,PIN)

/* from Panel */

Code(cid,PIN)

Validation

OK
/* from
Central */

OK
TO cur_panel

Idle

cur_panel :=
SENDER

unlockDoor

unlockDoor

 NOK
/* from
Central */

NOK
TO cur_panel

Idle

DCL cur_panel PId ; /* Current panel whose Code will be validated */
DCL cid, PIN integer ; /* Temporary variables for the data attributes of 'Code' */

1(1)PROCESS TYPE Controller

[Code]

[(validity)]

[opened,closed]

[open,close]

[(validity)]

[Code]
P D U

Access points shall handle the use cas-
es where a user enters a code and gets
either Ok or NotOK. The Controller
object as part of AccessPoint shall pro-
vide the required properties. This leads
to the process type above. It is made in-
dependently of how Code is obtained
from the user and how OK and NotOK
are presented (interface specific). It

has been decided that the validation
shall be done by the central unit. If we
did not want to take this decision at this
point, we could have made a transition
that simply (informally) provided the
validation, and then later changed this
to a communication with the central
unit.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1460 -

System Development Activities
Design

TIMe
TIMe Report
This process type fits into a design of the AccessControl object as a block (defined by a
block type) as in Figure 37.

Designing
non-
domain
given
objects

Should all required properties lead to attributes and behaviour of the domain given
objects? The answer is no!

The main purpose of the distinction between domain and system given aspects is that
special services should not be associated with domain objects, as these will probably not
be of interest to other systems in the domain. Besides working as inspirations for appli-
cation objects, domain object classes are candidates for re-use in different systems in the
same domain.

Which objects should then provide a property that is not obviously covered by a domain
given object?

The answer is:

• either a separate object,

Figure 37: Block type AccessPoint with processes

Open figure

e [(inp)]

[(outp)]

BLOCK TYPE AccessPoint 1(1)

DOOR

[(validity)]
[code] [open,

close]

[(inp)]

[(outp)]

[(validity)]

P1

SIGNAL opened,closed ; /* Door -> Controller */
SIGNAL open, close ; /* Controller -> Door */
/* signallists (inp), (out) and (validity) are defined in
enclosing block, as is the signal 'Code' */

CE

CU

D

c

[(validity)]

[Code]

lsc:
Controller

P D
U

Controller

Panel

[unlock,
lock]

d

[unlock,
lock]

[opened,
closed]

[isOpen,
isClosed

[isOpen,
isClosed]

[Code]

The Sesam Sesam group had been suc-
cessful in starting out with domain ob-
jects in order to get at the application
objects, but ...
• “This is all very nice, but how do we

introduce the new system aspects?”
• Says TIMe: “As mentioned before

there are mainly two ways out: either
introduce new system objects, or
introduce specialisations of the

domain object classes. If you have
an UML domain object model and
generate code from this, your extra
classes or your specialisations can be
done either in UML or directly in
C++ or Java. If you have turned to
SDL, then you have part of your
domain object model represented as
types in SDL, and you make new
types or subtypes”
TIMe at a glance - 61 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
• or an object of a subclass of the corresponding domain object class.

The last alternative requires that the domain object class is represented also in the design
language, and it is recommended to document that the subclass is system given and not
domain given.

If it is an interface property, and if the property has to do with the actual appearance or
implementation of the interface, then it should be provided by a separate interface
object, like the Panel process in Figure 37. Low-level interface (protocols) or the win-
dow part of a user interface should be isolated in special objects, while interface given
behaviour at the “application” level can be provided by specialisations of domain
classes. The main thing is to isolate the objects that may change with change of under-
lying technology. The answer can also be given by how the interface is to be provided
(existing protocol implementations, user interface toolkits).

If it is a system given property and if it requires e.g. a separate computation or interac-
tion with other non-domain given objects, then it should be provided by a separate
system object. An example of this is the operator handling object. It should be defined
as a separate object, but its class may e.g. be a specialization of a class that exists, e.g.
AccessPoint.

It may be tempting to take each use case and make a kind of “control” object that takes
care of this use case - then it will at least be easy to trace it when considering new
requirements related to the use case. Most often, however, the instances in the MSC dia-
grams for the use cases only represent Roles or partial behaviour of some role. The
challenge in design is rather to distribute the required behaviour to objects, and objects
will often play several roles.

Evolution
of domain
models,
including
design
issues

The distinction between domain, system and interface given aspects may change over
time. The domain may be narrowed to include some of the other aspects, and the classes
of the domain models may include more and more of the properties that appear to be
common for many systems.

“What about the introduction of the
interface specific aspects? Does that
follow the same pattern: either special

objects or specialisations of the domain
object classes?”
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1462 -

System Development Activities
Design

TIMe
TIMe Report
Locally
defined
types or
types in
packages?

Where shall the application given design types be defined? A priori they are defined as
part of a system model.

Types may be defined in SDL packages and used by the system model. Such packages
may either be system specific or more general.

Types in the latter kind of package will have to be more general than in the first kind of
package, as they shall be usable in more than one system. As a starting point, design
types are defined as part of the system and shall at least fulfil their “mission” there. In
addition, it is recommended that types are turned into general types that can be used in
other systems.

TIMe provides guidelines on how to achieve generality:

• by generalization, that is by defining supertypes with virtual properties for redefini-
tion in subtypes, and

• by parameterization, that is types with context parameters, so that types can be fully
defined without being in their actual contexts.

Even when defining a general type it is advocated to specify possible requirements on
the contexts in which the type can be used. These come from the context models and are
readily expressed by gate constraints in SDL types.

Architecture Design: choice of implementation platform
Architecture Design designs an implementation architecture that will behave as defined
in the application object model and that satisfies the non-functional properties, taking
the actual platform in terms of hardware and support software into account. It will also
define a process for (automatic) generation of application implementation code and for
configuration and building of system instances.

The purpose of architecture design is to answer how the system is going to be realised.
This is expressed using Architecture descriptions that show:

system

Domain

Domain object
 model

Domain object
 modelAccess Point

Access
Point

block type
AccessPointg

block type
AccessPointg

Figure 38: Evolution of domain object model

Example
TIMe at a glance - 63 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
• the overall architecture of hardware and software;

• how Frameworks and Applications are mapped to the Architecture.

While the Application and the Framework has focus on functional properties and behav-
iour, the Architecture has focus on non-functional properties and physical structures.
The purpose is to give a unified overview over the implementation and to document the
major implementation design decisions.

Architecture design determines critical architectural issues such as physical distribution,
global addressing schemes and fault handling. Some of these may subsequently be
reflected in the Framework model in order to describe the complete system behaviour.

The Architecture consists of two main parts:

• The Platform, which consists of the hardware with support software (such as the
operating system, a DBMS and middleware) and the Infrastructure.

• The Application implementation.

Associated with the architecture it is recommended to define a process for (automatic)
generation of code and for configuration and building of system instances.

Architecture design is only performed when the implementation mapping is undefined
or needs to be changed. This occurs during the initial development of a system family
and during maintenance when changes in the platform are made.

During normal application evolution, the Architecture will stay the same, and system
evolution can take place mainly at the Application level.

Hardware and software architectures are defined to a level of detail from which imple-
mentation is well defined. The architecture shall separate between support mechanisms,
such as an operating systems, and applications.

In an initial development, Architecture design will come before Framework/Infrastruc-
ture design. Architecture design involves the choice of implementation platform, what
should be done in software and what in hardware, etc. The design may have to be
adjusted according to this choice. SDL tools may e.g. impose restrictions in order to sup-
port code generation.

TIMe has a 5-step procedure for making architecture design. This is not applied to the
example in this overview and is therefore not covered here.

Framework Design: from Infrastructure to Framework
Framework Design defines an abstract and generic framework object model and a
method for instantiating the Framework with Applications. In this activity the imple-
mentation dependent functionality is taken into account, e.g. distribution support, error
handling and configuration. It develops a layered approach which separates the Appli-
cation and the implementation dependent Infrastructure. The infrastructure part will be
nearly complete, and the rules for mapping Applications to the Framework will be well
defined.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1464 -

System Development Activities
Design

TIMe
TIMe Report
Making infrastructure

The infrastructure part of a system contains additional behaviour needed to fully under-
stand what the system does (i.e. the complete system behaviour). Here we find objects
and parts of objects that support distribution, system administration and other facilities
not directly related to user services. Whenever practical the Application and the Infra-
structure should be put together in a Framework that serves to simplify the definition of
new systems. This implies that the objects that are mainly application specific objects
will get some infrastructure specific elements in order to work on the given
Infrastructure.

When taking infrastructure aspects
into consideration, the system as
designed from an application point of
view may be redesigned. Restructur-
ing does not mean that everything has
to be redefined. A majority of the
processes from the first application
design may be left unchanged. As
they are defined as stand alone types,
it is a simple matter to put them into a new structural context together with some new
processes.

In general it will be an advantage if the application design has been done by means of
types that are as general as possible. General types can be used in more than one context,
and when redesigning, the context of the “application” types may change slightly.

. . .

. . .

infrastructure specific

application specific

Figure 39: Application and infrastructure
specific parts of systems into a framework
TIMe at a glance - 65 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
With the redesigned system, the application types are possibly modified in order to fit
into the new structure. If this has been done, a division of the system into application
and infrastructure parts has been obtained, and for the next systems (with the same infra-
structure) it is a matter of exchanging the application types with either improved
versions or new application types with e.g. new functionality.

Figure 40: Redesigned Access Control
system V3

Open figure

SYSTEM AccessControl

clusters(100):
ClusterCE

OP

C

GE
GC

Cluster Entry

CentralUnit

In the access control
system the channels
between the Access-
Points and the Cen-
tralUnit are
candidates for distri-
bution. We therefore
decide to let these
channels be the ones
that cover distances.

There will be at least
one central comput-
er and from zero up
to 100 local comput-
ers. In this architec-
ture we shall
implement the Ac-
cessPoint and Cen-
tralUnit processes in
software running on

the computers. We structure the system accordingly: a block set
Cluster for the part of the application running on the local comput-
ers, and the CentralUnit for the part running on the central comput-
er.
Note that this distributed architecture is different in structure from
the application design, and that some communication protocols will
be needed to support the communication between the local and cen-
tral hardware.
TIMe at a glance66 -
 TIMe version 4.0 © SINTEF Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
Figure 41: Cluster with LocalUnits and
ClusterUnits

Open figure

BLOCK TYPE Cluster

Protocol

localunits
(10):LocalUnit

clustercontrol:
ClusterUnit

PR

PR

GC

GE

e

e
CE

AccessPoint

ClusterUnitLocalUnit

In this solution the vali-
dation database will be
distributed. There will
be a copy of the central
Validation process (and
its database) in each
cluster. This means that
the CentralUnit must
handle updates in a dis-
tributed database. This
introduces a new prob-
lem to solve in the func-
tional design, but the
Access Points and the
Validation processes in
each cluster may (hope-
fully) work just as be-
fore.

appli-
cation
specif-
ic parts

infra-
struc-
ture

specif-
ic parts

 access
point

valida-
tion

proto-
col

cluster
unit

local
unit
TIMe at a glance - 67 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
Making frameworks
Having identified an infrastructure that seems to be common for many systems with
almost the same application properties, TIMe advocates the re-designing of the system
into a framework. TIMe gives guidelines on how frameworks can be defined in SDL.
The following is a short introduction to how it is done.

As mentioned above, a usual definition of a framework is the following: “In object ori-
ented systems, a set of classes that embodies an abstract design for solutions to a
number of related problems.”

TIMe puts a little more into frameworks than the definition above, and one reason is that
SDL can specify the static structure of systems and not just a set of types.

A framework is a class/family of systems, with predefined structure so that a specific
system only has to provide the specific “contents” of part of this structure. Frameworks
often come about because an abstract (application specific) system description has to be
supplemented by a large infrastructure part in order to be executable on a given plat-
form. Instead of making the infrastructure part again for the next system with the same
infrastructure on the same platform, a framework that embodies both the application and
the infrastructure part is defined. In a framework the infrastructure is stable, while the
application part may vary from system to system.

Figure 42: AccessPoint used in both
LocalUnit and ClusterUnit

Open figure

L1:
AccessPoint

L2:
AccessPoint

P1:Protocol

P2:Protocol

Validation

BLOCKTYPE LocalUnit

BLOCKTYPE ClusterUnit

PR
PR

e

e

P3:Protocol

CE

d

d

We see that AccessPoint will be
used both in the LocalUnits as
well as in the ClusterUnits. Those
in the ClusterUnits will have di-
rect, local access to the Validation
process, whereas those in the Lo-
calUnits must communicate via
physical links and protocols (rep-
resented by the block P1 of type
Protocol). The signals to and from
the AccessPoint blocks will be the
same.

applica-
tion specif-

ic parts

infrastruc-
ture specif-

ic parts

 access
point

validation

protocol

cluster unit

local unit
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1468 -

System Development Activities
Design

TIMe
TIMe Report
In the infrastructure design (see Making infrastructure (p-65)) the infrastructure part
consists of the restructuring of the system into cluster units and local unit and the intro-
duction of the protocol units. The application specific part is represented by the block
type AccessPoint.

Figure 43: Access Control System type as a framework

Open figure

The system description of Figure 40 is turned into a framework simply by defining it as
a system type and defining the application specific types as virtual types (in this case
AccessPoint), see Figure 43.

SYSTEM TYPE AccessControl

CentralUnit

clusters(100):
ClusterCE

OP

C

GE
GC

ClusterVIRTUAL
AccessPoint

CD
GD
TIMe at a glance - 69 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

TIMe
TIMe Report
The Cluster block is almost as before: it uses the virtual block type AccessPoint (but it
does not contain its definition), and it embodies the infrastructure parts needed for dis-
tribution (ClusterUnit, LocalUnit and Protocol), see Figure 44.

An actual system based upon a framework definition is described by defining a subtype
of the framework system type, and redefining the virtual, application specific types, see
Figure 45. The rules for redefinitions of virtual types in SDL ensures that the redefined
AccessPoint will have the same interface as specified in the virtual definition (as a con-
straint) and thereby assumed by the rest of the system type.

Figure 44: Block type Cluster as part of framework for Access Control
Systems

Open figure

BLOCK TYPE Cluster

Protocol

LocalUnit ClusterUnit

localunits
(10):LocalUnit

clustercontrol:
ClusterUnit

PR

PR

GC

GE

e

e
CE

GD

d

d

L1:
AccessPoint

L2:
AccessPoint

P1:Protocol

P2:Protocol

Validation

BLOCK TYPE LocalUnit

BLOCK TYPE ClusterUnit

PR
PR

e

e

P3:Protocol

CE

d

d

Figure 45: An actual system based upon a
framework

Open figure

REDEFINED BLOCK TYPE AccessPoint

SYSTEM TYPE actualAccessCon-
trol INHERITS AccessControl
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1470 -

System Development Activities
Implementation

TIMe
TIMe Report
Implementation
Implementations are detailed and precise descriptions of the hardware and the software
that a concrete system is made of. They define the physical construction of systems in a
family. The software part will be expressed in programming languages such as Java,
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagrams and VHDL.
Software plays a dual role. Firstly, as a description to be read and understood outside the
system, and secondly as an exact prescription of behaviour to be interpreted inside the
system.

Concrete
system

Concrete systems consist of:

• The Application and the Framework software. State-of-the-art tools allow this soft-
ware to be automatically derived.

• Special Application and Framework hardware. This will be special hardware
designed to perform part of the Application or the Framework.

• The Platform, which consists of:

- the support software which normally is a layered structure containing operating
systems, middleware for distribution support, SDL runtime systems, DBMS and
interface support;

- the general hardware which normally is an network of computers.

What to do For every new system development, the platform is an important design issue, as it
determines important properties such as cost, reliability and flexibility. It also influences
the way that Applications and Frameworks are implemented. The code which is gener-
ated for the Application and the Framework must be adapted somehow to the Platform.
Here the Vendors of code generators use two different strategies. One is to adapt the
code generator so the generated code fits the platform. Another is to adapt the generated
code to fit different platforms by means of interface modules and/or macros.

Once the platform and the code generation strategy is defined, it is possible to rely on
automatic code generation for Application and Framework evolution for those parts
where SDL is used.

Instantiation
The main thing in this activity is to configure and to build system instances. Configura-
tion can be applied both to the Application, the Framework, the Architecture, and the
Implementation levels. Ideally we should perform configuration at the level where it
belongs: functionality at the Application and/or Framework levels, and implementation
at the Architecture and/or Implementation levels.

It is possible to perform some configuration at the Application and Framework levels
using SDL, but due to limitations in the language, this is restricted.

The common practice in most companies today is therefore to do configuration on the
implementation level using configuration files and tools like Make. (An alternative is to
use special configuration languages.)
TIMe at a glance - 71 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Instantiation

TIMe
TIMe Report
We recommend that a method for configuration and building of system instances is
defined as part of the Architecture design work.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1472 -

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
Object and Property Models
- and the Languages for describing them

Systems in the scope of TIMe are characterised by consisting of concurrently executing
objects that communicate by sending signals and whose behaviour is best described by
states and transitions (reactive systems).

These systems tend to become large and complex - therefore it is not sufficient to
describe the objects - the system also has to be structured in some way. Important prop-
erties are often described by use cases and by interactions between objects of the system.

UML [24], OMT [32] and many other methods use object diagrams and informal
sketches in the specification and design of structure and a Statecharts-like notation for
the specification of behaviour. TIMe uses one language for both: SDL.

SDL is a language recommended by ITU [11] for specifying structure and behaviour of
systems that are reactive, concurrent, real-time, distributed and heterogeneous (not just
telecommunication systems).

MSC is a notation recommended by ITU [18] for describing interaction scenarios.

Object Modelling
TIMe recognizes that UML and SDL have slightly different approaches to object mod-
eling, that these differences in some cases are beneficial (UML provides e.g. concepts
for associations, while SDL does not) and that they in other cases may cause problems.
Instead of a clear cut between object modeling in UML and SDL, TIMe defines its
underlying approach to object orientation and provides guidelines on how to use both
UML and SDL to support this.

This section will give an short introduction to the elements of this underlying approach
to object orientation, and then introduce both UML and SDL, describing how they
match this approach.

What is
object
modelling

The approach followed in this method is that an object model is regarded as a physical
model, simulating the behaviour of either a real or imaginary part of the world. The main
property of physical modeling is that it is based upon a conception and understanding of
the application domain in terms of phenomena and concepts, and that physical models
will have elements which directly reflect these phenomena and concepts. The physical
model will consist of

- objects, that represent the phenomena, and

- classes that represent concepts.

Objects are characterised by variable attributes (data attributes), procedures (potential
behaviour patterns) and behaviour. Objects in this approach may execute their behav-
iour concurrently with other objects. This kind of object is sometimes called “active
objects” in contrast to “passive (data) objects”.

Associated with objects and classes are a number of structure and abstraction
mechanisms:
TIMe at a glance - 73 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
• Identification of objects and the classification of these into classes.

• Part/whole aggregation, that is objects as part of other objects.

• Relation composition, that is an object has relations to other objects instead of having
them as parts.

• Specialization of classes. Classification relates all objects with the same set of prop-
erties into a class. Specialization is a mechanism for the structuring of sets of classes
with similar properties into general and specialized classes.

• Localization of definitions: Some objects and classes are only meaningful within the
context of a specific object or class.

class
library

In addition, object oriented languages have support for some kind of library concept,
enabling sets of related classes to be used in many different applications.

Domain
and design
object
models

In order to bridge the gap
between domain object mod-
eling and design object
modeling, TIMe provides
guidelines for object model-
ing in general, and
specialized guidelines for
analysis and design.

UML for Object Modelling
TIMe uses UML for describing object models in case the formality of SDL is not
required (or desired). The full TIMe book contains a tutorial on UML; the following is
just an overview, covering the most important elements.

classes UML object models consist of a set of classes. A class is defined by a class diagram with
definition of attributes and operations.

attributes In Figure 19 three classes are defined with attributes, and no operations.

Figure 46: Attribute specification

Open figure

Domain Object Model

Design Object Model

Object Model

User

Name: string
Number: Integer
Level: Integer

Access Zone

Name: string
Level: Integer

Access Point

Name: string
Number: Integer
Access: key type
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1474 -

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
Relations
and com-
munication
connections

Classes may be related, as e.g. in the domain object model in fig. 18 The access control
domain (p-39). AccessPoint and User are connected in order to specify that objects of
these classes communicate.

The endpoints of the relations may have cardinalities.

specializa-
tion

Classes may inherit properties from a superclass, as in Figure 48, and thereby define
more specialized classes.

Figure 47: The access control domain

Open figure

Figure 48: Possible classification of Access Points according to logging and blocking
functionality

Open figure

Although UML supports multiple inheritance, TIMe advocates the use of single inher-
itance. One reason is that this is by far the best understood concept - another reason is
that SDL only supports single inheritance.

part/whole
-real
aggrega-
tion

The fact that an object contains other objects is in UML specified by an aggregation
association.

In order to really specify that the objects are part of the containing object and that rela-
tions to these part objects are only meaningful when contained in this object, the SOON
notation [1] can be used, see Figure 49. It is here specified that each AccessPoint con-
sists of three objects (of classes Panel, Door and Controller) and that the environment

may enterbounded by

AccessZone

AccessPoint User

may enter
through*

1..*

*

1

11

BlockingAccessPoint
AccessPoint

LoggingAccessPoint
TIMe at a glance - 75 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
communicates with some of these part objects. In UML the User in the environment
would have associations to the class Panel in general, while what we want to express is
that they only have associations with Panels as part of AccessPoints.

Figure 49: Environment entities interact with parts of the system

Open figure

The corresponding can be expressed in UML using the Composite relation, preferably
using the nested graphical alternative, see Figure 50.

Figure 50: Composite aggregation in UML

Open figure

Localiza-
tion

Classes defined locally to classes is not supported by UML. If this is important to
express, then it may either be express informally or it may be specified in SDL.

AccessPoint

P:(Panel)

D:(Door)

Central
Unit:(User)

[Card code]

<display messages>

<key strokes>

[Code]

[OK,NOK]

C:
(Con-
troller)

AccessPoint

Door

User Panel APC:

Controller

Central-
Unit

1

1

1

TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1476 -

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
SDL for Structure and Object Behaviour

system An SDL system consist of a number of blocks, connected by channels. Possible commu-
nication by means of signals is indicated on the channels.

The system diagram in Figure 35 defines a system with one block CentralUnit and a set
of 100 blocks of block type AccessPoint.

block A block may either be further structured into blocks, or it may contain a number of pro-
cesses. A block type defines a category of blocks with the same properties. The block
type diagram in Figure 52 defines the AccessPoint referenced in the system diagram.

Each AccessPoint block will consist of three processes: Panel, Door and apc (access
point controller) of process type Controller. The fact that the process type controller is
defined to be virtual implies that it may be redefined in subtypes of AccessPoint.

The e and C on the outside of the frame are gates, that is connection points for channels
- they are used in the system diagram above.

Figure 51: Application design in SDL

Open figure

system AccessControl 1(1)

CentralUnit

CE

C[(inp)][(outp)]

[(validity)] [Code]

AccessPoint

AP(100):
AccessPoint

e c

/* Signal definitions for AccessPoint communication */
SIGNAL
eject-card, lock, unlock
input-card, isOpen, isClosed
display,
keys;
SIGNAL Code(integer,integer);
SIGNAL OK,NOK,ERR ;

SIGNALLIST validity = OK, NOK, ERR ;
SIGNALLIST outp = EjectCard, display;
SIGNALLIST inp = InputCard, keys ;

/* AccessPoint
/* ENV
/* Display
/* ENV
/* AccessPoint
/* CentralUnit

TO ENV */
TO AccessPoint*/
TO ENV */
TO Keyboard */
TO CentralUnit */
TO AccessPoint */

CD

d

[isOpen,isClosed]

[lock,unlock]

block
type

channel

block

block set
according to block type
TIMe at a glance - 77 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
“class” The block type in SDL corresponds to a class in UML. The instances of a block type are
objects that contain other objects (blocks or processes).

communi-
cation
connections

The processes of each AccessPoint block are connected by signal routes, and the signals
on these indicate the possible communication between the processes. The signals used
between the processes of a block can be defined locally to the block.

process:
objects with
behaviour

Processes execute concurrently, communicate by means of signal exchange (or remote
procedure calls), and have the behaviour represented by an Extended Finite State
Machine. The extensions are that processes may have variables and actions as part of
transitions.

The process type Controller in Figure 52 is defined by the process type diagram in Fig-
ure 54. It defines the behaviour of Controller process by means of states and transitions.

attributes The process type also defines the variable attributes of Controller processes: cur_panel
of type PId (denoting a Panel process instance) and two integer attributes cid and PIN.

Figure 52: Block type AccessPoint with virtual Controller process type

Open figure

e [(inp)]

[(outp)]

virtual

block type AccessPoint 1(1)

Door

[(validity)]
[code] [opened,

closed]
[open,
close]

[(inp)]

[(outp)]

[(validity)] [Code]

P1

SIGNAL opened,closed ; /* Door -> Controller */
SIGNAL open, close ; /* Controller -> Door */
/* signallists (inp), (out) and (validity) defined in
enclosing block. This holds also for signal 'Code' */

CE

CU

D

C

[(validity)]

[Code]

apc:
Controller

P D
U

Controller

Panel

[unlock,
lock] d

[unlock,
lock]

[isOpen,
isClosed]

[isOpen,
isClosed]

single process (set)process type

process set according to type Controller gate

signal route
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1478 -

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
specializa-
tion

A type may be defined as a subtype of another type (the supertype), thereby inheriting
all the properties defined for the supertype and possibly redefining the virtuals of the
supertype.

The subtype hierarchy which is specified in UML in Figure 48 will in the corresponding
SDL design be represented by two block types inheriting the block type AccessPoint. In
Figure 54 this is illustrated for BlockingAccessPoint.

Figure 53: Virtual process type Controller

Open figure

to
Central

Validation

Idle

Code(cid,PIN)

/* from Panel */

Code(cid,PIN)
via U

Validation

virtual OK
/* from
Central */

OK
to cur_panel

Idle

cur_panel :=
sender

unlockDoor

unlockDoor

virtual NOK
/* from
Central */

NOK
to cur_panel

Idle

virtual process type Controller

dcl cur_panel PId ; /* current panel whose Code will be validated */
dcl cid, PIN integer ; /* temporary variables for the data attributes of 'Code' */

1(1)

[Code]

[(validity)]

[opened,closed]

[open,close]

[(validity)]

[Code]
P D U

variables state input output
procedure
call

procedure
reference

gate
TIMe at a glance - 79 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
The redefined process type Controller inherits the states and transitions of the virtual
Controller from AccessPoint, and it adds states and transitions, as shown in Figure 55.

Figure 54: Block type BlockingAccessPoint as a subtype of
AccessPoint

Open figure

1(1)

redefined
C

[Enable,
Disable]

block type BlockingAccessPoint
inherits AccessPoint

Controller

additional signals
on inherited gate

Figure 55: Redefined process type with added states and
transitions

Open figure

redefined process type

inherits <<block type AccessPoint>> Controller

1(1)

*

Disable

BlockDoor

BlockDoor

blocked

blocked

Enable

Idle

U
[Disable,Enable]

*

 <<block type BlockingAccessPoint>> Controller

added
state

added
input for
all states

save
all
other
sig-
nals
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1480 -

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
When the redefined Controller gets a Disable signal (in all states) it will enter the state
Blocked, where it will only accept Enable, while all other signals will be saved (for con-
sideration in other states).

package:
the SDL
library
concept

In addition to the structuring of systems into blocks of blocks or processes, SDL speci-
fications can be organised in packages. A package is a collection of type definitions.

In Figure 56 the signal definitions for the access control domain have been collected in
a package, and in Figure 57 they are used by a system diagram.

Figure 56: Package diagram SignalLib

Open figure

package SignalLib

/* Signal definitions for BlockingAccessPoint communication */
signal
Disable,
Enable ;

/* CentralUnit to
/* CentralUnit to

BlockingAccessPoint */
BlockingAccessPoint */

signal opened,closed ; /* Door to Controller */
signal open, close ; /* Controller to Door */

/* Signal definitions within AccessPoint */

/* Signal definitions for AccessPoint communication */
signal
eject-card, lock, unlock
input-card, isOpen, isClosed
display,
keys;
signal Code(integer,integer);
signal OK,NOK,ERR ;

signallist validity = OK, NOK, ERR ;
signallist outp = EjectCard, display;
signallist inp = InputCard, keys ;

/* AccessPoint
/* ENV
/* Display
/* ENV
/* AccessPoint
/* CentralUnit

to ENV */
to AccessPoint*/
to ENV */
to Keyboard */
to CentralUnit */
to AccessPoint */

package diagram

signal definitions

signal list defini-
tions

signal definitions
TIMe at a glance - 81 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
Figure 57: System using a package of type definition

Open figure

Guidelines on Object Modeling

Guidelines
for Domain
Object
Modeling

Domain Object Modeling is a special kind of Object Modeling. In addition to the general
guidelines for Object Modeling found in TIMe, the following special guidelines apply:

• Object classes with attributes, relations and connections
If attributes are not known, just introduce the class. Include any relation or commu-
nication link that may be important - in the design activity these will be refined and
detailed (or thrown away). Do not use too much time on signals or communication
links, unless they are stated in the Domain Statement.
Communication connections between classes indicate that there will be interaction
property models between instances of these. For each of the communication connec-
tions check if this is important enough to call for interaction property models.

• Relations
Do not be afraid to use illustrative relations, but be aware that they may have to be
“implemented” during design, while constructive relations may be implemented
automatically through a data base part of the system.

• Attributes
If the type of an attribute is not known, simply introduce the attribute without any
type, or introduce the attribute type as a class - this will then be defined during design.

• Aggregation
Use only real aggregation when it is obvious that this is the case. If in doubt, use rela-
tion aggregation, as this the most flexible.

system AccessControl 1(1)

CentralUnit

CE

C[(inp)][(outp)]

[(validity)] [Code]

AccessPoint

AP(100):
AccessPoint

e C

use SignalLib

CD

d

package reference clause

[isOpen,isClosed]

[lock,unlock]
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1482 -

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
• Behaviour associated with the object model
This will mostly be in terms of Interaction Models by use of MSC. If state informa-
tion is important for the behaviour of an object, sketch an SDL process graph
fragment for this part of the behaviour.

• Localisation (nesting)
Do not consider this unless it is quite obvious. In case SDL is used for domain object
modeling, it will produce a set of packages of type definitions. These will mostly be
independent of the actual context. If domain modeling goes so far as to define system
and block types, then apply the general rules of localization.

Guidelines
for Design
Object
Modeling

Object modeling for Design is a special kind of object modeling. The general guidelines
of Object Modeling applies, with the following additions:

• Object classes with attributes, relations and connections
Attributes will be defined by attribute types that are either reused or designed.
Associate signal lists with communication links.
Turn communication connections into signal routes or channels when designing in
SDL.

• Relations
Stick to constructive relations if part of the product is to be implemented by a data-
base component; otherwise “implement” all relations in SDL as data or signals.

• Attributes
Types of attributes must be defined, preferable as ADTs.

• Aggregation
Use real aggregation when it is obvious that this is the case, and use the SDL kind of
aggregation.

• Behaviour associated with the object model
This may still be in terms of Interaction Models by use of MSC, but more SDL pro-
cess graph fragments should be developed during Design.

From UML Models to SDL Models
SDL is more formal than UML. That is the reason why SDL is chosen for specification
and design, and the reason for using UML for analysis and sketches.

SDL has more specialised concepts, so in a mapping from UML to SDL a number of
decisions must be taken. Most UML classes of objects will map to process types, but in
UML we may define attribute types as classes, while attributes in SDL are mapped to
variables of data types. Aggregated objects in UML may either map to blocks (contain-
ing other blocks or processes) or to processes (containing services).

TIMe provides guidelines on this mapping - some of them are given below. Most of
them are given in a short form just to give an impression of what kind of guidelines we
have.

classes
->
types

Classes in UML map in general to types in SDL. Classes of objects with their own
behaviour and with communication with other objects map to processes types, classes
of container objects map to block types, and data object classes map to SDL data types.
TIMe at a glance - 83 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
attributes
->
variables

Attributes of objects map to variables of data types. A difference between UML and
SDL is that attributes of UML objects are just of predefined types, while variables of
SDL can be of user-defined types.

Operations Operations are either mapped to remote procedures or to signals in combination with the
corresponding transition and possible reply signal.

Relations
-> ?

Relations are not easily mapped to SDL. TIMe makes a distinction between constructive
and illustrative relations. Being aware of this distinction when defining relations helps
perform the mapping. Constructive relations will readily be implemented by a corre-
sponding data base part of the system, while illustrative relation must be “implemented”
in SDL.

Connec-
tions

Connections are mapped to signal routes/channels and corresponding gates on the types
involved.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1484 -

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
The relations in Figure 58 are for illustrative purposes in the mapping of the AccessPoint
class to the AccessPoint block type, while the connection between AccessPoint and User
maps to a gate e. The User class of objects is “mapped” in the first round to processes in
the environment of the AccessPoint and in the second round to processes in the environ-
ment of the system.

In a further mapping of the classes in Figure 58, the classes be in addition be mapped to
classes of objects in a database of which users may enter which access zones through
which access point. In that mapping the relations are not just illustrative but may map to
corresponding relations in the database.

may enter
AccessZone

AccessPoint User
may use

e

[(inp)]

[(outp)]

BLOCK TYPE AccessPoint 1(1)

Panel Door

[(validity)]

[code] [opened,
closed]

[open,
close]

[(inp)]

[(outp)]

[(validity)] [Code]

P1

CE

CU

D

C

[(validity)]

[Code]

apc:
Controller

P D

U

Controller

illustrative
relations

constructive
relation

active object class
mapped to a block
type of processes

SYSTEM AccessControl 1(1)

CentralUnit

CE

C
[(inp)][(outp)]

[(validity)] [Code]

AccessPoint

AP(100):
AccessPoint

e C

connection
mapped to gate
and channel

Figure 58: Mapping classes, relations and connections to SDL
TIMe at a glance - 85 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
Single
Inheritance

It is recommended to use only single inheritance. This is readily mapped to the corre-
sponding mechanism in SDL. The difference is that inheritance will have more
implications in SDL than in UML, especially for inheritance between process types.
While UML only specifies the inheritance of attributes and operations, inheritance for
process types implies also the inheritance of behaviour also.

Single inheritance for data classes is mapped to corresponding inheritance for data types
in SDL - the only problem being that only operators can be inherited.

Inheritance between classes are not restricted to UML classes that map to process types
or block types. Architecture of systems can be represented by a special system class in
UML and if using the real aggregation of UML the content of the system objects can be
readily expressed. Subclasses of such system object classes are mapped in the same way
as in Figure 59, just substituting BLOCK with SYSTEM in the headings.

If the UML model contain inheritance between the types of events in use cases, then the
mapping of this is to a corresponding inheritance between signal type definitions in
SDL, see Figure 60.

Access Point

Logging
AccessPoint

BlockingAc-
cessPoint

Figure 59: Subclasses of container object classes mapped to
block types in SDL

REDEFINED

C

[Enable,

Disable]

BLOCK TYPE BlockingAccessPoint
INHERITS AccessPoint

Controller

FINALIZED

lsc:
Controller

LogDevice

[(validity),Code]

L
LD

Controller

BLOCK TYPE LoggingAccessPoint
INHERITS AccessPoint
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1486 -

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
Multiple
inheritance

Multiple inheritance of the special kind where just one of the superclasses is a real super-
class and the other are just “interface classes” (that is classes with only operations with
no specification of behaviour, and no attributes) can in SDL be represented by inherit-
ance combined with a gate for each interface superclass.

Multiple inheritance in general can be mapped into a type where the properties of the
superclasses are copied into the type corresponding to the subclass (resolving the inher-
itance) or in some cases by aggregation. The first is not recommended, but must be done
in some cases. The second alternative take different forms:

• If the superclasses are container classes, then the resulting block type may get a block
for each superclass.

• If the superclasses are active classes corresponding to process types, then careful
specification of these process types - so that they can work both as process types and
as service types (that is no start transitions and input signals context parameters) -
makes it possible to represent multiple inheritance by composing the process type by
means of services. These services are then defined as subtypes of the services types
corresponding to the superclasses, with one of them getting a start transition and
actual signal parameters provided so that services do not have overlapping valid input
signal sets.

• If the superclasses are data classes, then the resulting data type can be defined as a
struct with each field being of the types corresponding to the superclasses.

Normally a problem with representing multiple inheritance by means of aggregation, in
languages with object references, is that the objects of the resulting subclass cannot be
referenced by object references typed with the superclasses. SDL does not have a gen-
eral object reference concept and process instances can only be referenced by untyped
PIds, so this is not a problem in SDL.

Code

OperatorCode

TestCodecid
PIN

Figure 60: Inheritance for signals

op

test

SIGNAL Code(integer,integer);
SIGNAL OperatorCode INHERITS Code ADDING (integer);
SIGNAL TestCode INHERITS Code ADDING (integer);
TIMe at a glance - 87 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Object Modelling

TIMe
TIMe Report
part/whole
-real
aggrega-
tion

In order to really specify that the objects are part of the containing object and that rela-
tions to these part objects are only meaningful in their property of being contained in this
object, TIMe uses the notation in Figure 61. It is specified that a AC-System object con-
sists of two objects (of class AccessPoints and CentralUnit), and that the environment
communicates with some of these part objects. In UML the User in the environment
would have associations to the class AccessPoint in general, while what we want to
express is that they only have associations with AccessPoints as part of AC-System. The
mapping to SDL is straight forward - here it is indicated that CentralUnit is not an object
of a class but specified directly. The definition of the block type AccessPoint is left out
in the mapping - it can be defined in a package or as part of the system.

Relation
aggrega-
tion

UML supports a special aggregate association. Depending on how this is used, it maps

- either to whatever kind of relation mapping in SDL is chosen,

- or to relations in a corresponding data base model,

- or to real aggregation in SDL, see Figure 62.

Central
Unit

user Access
Point

AC-System

SYSTEM TYPE AccessControl

CentralUnit

CE

C
[(inp)][(outp)]

[(validity)] [Code]

AP(100):
AccessPoint

e C

Figure 61: Mapping real aggregation to aggregation in SDL
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1488 -

Object and Property Models - and the Languages for describing them
Property Modelling

TIMe
TIMe Report
Property Modelling

What is
property
modelling

The properties characterize the objects identified in the Object Modelling. It is, how-
ever, not always the case that the object model has been created before the property
model. During the identification of the objects, properties become clear, and during the
description of properties, the objects and their relations must be established.

The following are some common properties of property descriptions:

• Property descriptions cover specific aspects;

- liveness properties: something good will eventually happen;

- safety properties: something bad will never happen;

- overview of functionality (functions and function lists, functional roles);

- focus on interaction (use cases, MSC diagrams);

- capacity and timing constraints;

- physical constraints: temperature, humidity, power consumption, concrete
interfaces,

BLOCK TYPE AccessPoint

Panel Door

apc:
Controller

 AccessPoint

Panel Door

PROCESS TYPE

dcl theDoor PId

PROCESS TYPE Door

dcl theAccessPoint PId

to PIds as relations

to database part
of application

to aggregation in SDL

OR OR

Figure 62: Mapping relation aggregation in OMT to SDL

AccessPoint

Controller
TIMe at a glance - 89 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Property Modelling

TIMe
TIMe Report
- other not so easily formalized properties: modifiability, security, error handling

• Property descriptions may overlap and underlap;
As an example we are used to accepting that the MSC document will not comprise a
description of all traces possible of the SDL model (object model).

• Property descriptions are often declarative rather than imperative;
While the object model in SDL may be seen as a complete imperative description of
the system, property models are often declarative meaning that they express some-
thing which either holds or does not hold in the model.

• Property descriptions supplement object descriptions;

MSC for Property Modelling
The basic notation for property modelling is MSC-96. MSC highlights interaction
between instances based on messages. MSC is most effective when the sequencing of
messages between the acting objects is of major importance.

The full TIMe contains tutorials on MSC-92 and MSC-96 - the following is just an
overview.

MSC concentrates on describing the message-sending between instances. The important
invariant for messages is that a message must be sent before it is received.

Figure 63: An MSC

Open figure

Figure 63 describes a very simple interaction between a user and an access control sys-
tem. The user presents the personal code to the system which then returns that the user
is eligible to enter the door. The user then pushes the door open.

User AC System

Code

OK
Push door

msc User_accepted

MSC heading

(more)

MessageEvent EnvironmentInstance
Timeline (more)
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1490 -

Object and Property Models - and the Languages for describing them
Property Modelling

TIMe
TIMe Report
instance The actors of an MSC are called instances. They are described by an instance head and
an instance end connected by a timeline as shown in Figure 64.

Figure 64: Instance

Open figure

events The instance head and instance end represent the start and end of events on the instance
timeline within the MSC. The timeline of an instance contains a sequence of events.The
most basic events are output and input of a message. Each message has exactly one out-
put event and one input event. Messages are communicated between instances or
between an instance and the environment. The environment is represented by the frame
around the MSC diagram.

Figure 65: MSC diagram

Open figure

timeline The events are ordered along each timeline, but events on different timelines are not
ordered.

User instance head

instance end

instance name

timeline (instance axis)

User AC System

Code

OK

Push door

msc User_accepted_1

the msc name

Unlock

frame
(environment)

output

input

message to the

message name

environment
TIMe at a glance - 91 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Property Modelling

TIMe
TIMe Report
MSC describe communication between instances. An instance need not be a process in
SDL terms. In Figure 65 we see that AC System is an SDL system.

MSC describes asynchronous communication. Input is normally interpreted as con-
sumption of the message.

MSC docu-
ment and
Conditions

The set of mscs that are used to describe a specific piece of reality is called an MSC doc-
ument. Relations between different mscs within a MSC document are called conditions.
Combining two mscs where the end condition of the first is equal to the start condition
of the second is legal. Combining mscs with unequal conditions is not legal. In Figure
66 there are two conditions, Idle and Door unlocked.

Figure 66: Conditions

Open figure

User AC System

Code

OK

msc User_accepted_3

UnlockCard outfinal
condition

Idle

Door unlocked

initial
condition
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1492 -

Object and Property Models - and the Languages for describing them
Property Modelling

TIMe
TIMe Report
Figure 67: Alternatives by conditions

Open figure

The two mscs Unlocked_reset and Unlocked_timeout in Figure 67 represent alternative
courses of action from the state Door Unlocked.

Conditions are not synchronization primitives meaning that the different instances are
not “within the condition” all at the same instant. The conditions are merely there for the
combination of mscs.

Coregion Coregion is a concept which is motivated by the fact that sometimes one does not care
in which order a set of events occur.

User AC System
msc Unlocked_reset

door

Opened
Push door

Door unlocked

Idle

Closed
Lock

door

Lock

User AC System
msc Unlocked_timeout

Door unlocked

Idle
TIMe at a glance - 93 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Property Modelling

TIMe
TIMe Report
Figure 68: Coregion

Open figure

In Figure 68 the User does not care whether he receives/consumes Card out or OK first.

Submsc Submsc is motivated by the need to look into an instance for more communication
details. Our AC System instance obviously contains a number of “smaller” instances.
The requirement analysis may want to express details about the internal behavior of the
system.

Figure 69: Decomposed

Open figure

When we want to define a submsc of an instance we depict that in the instance header,
see Figure 69. The decomposed instance must have the same interface as given by the
instance in the MSC of higher granularity.

User AC System

Code

OK

msc User_accepted_4

Unlock

Card out

Idle

Door unlocked

coregion

User AC System

Code

OK

msc User_accepted_5

Unlock

Card out

Idle

Door unlocked

declaring
decomposition

decomposed
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1494 -

Object and Property Models - and the Languages for describing them
Property Modelling

TIMe
TIMe Report
AC System of Figure 69 states that input of Code is followed in sequence by the outputs
of Card out, Ok and Unlock. To ensure this in the submsc, we sometimes have to intro-
duce additional (pseudo) messages, see Figure 70. This is an unfortunate aspect of this
mechanism.

Figure 70: Submsc

Open figure

Guidelines on Property Modeling

Guidelines
for Domain
Property
Modeling

1. Identify separate services which should be offered in the domain.

2. For each service, provide a prose description.

3. For each service, define which roles provide the service.

4. For each service, make the description more precise by:

- Formalizing (1): Transform those aspects which may into a formal language. The
behavior should preferably be described in MSC or SDL.

- Formalizing (2): Those aspects which do not lend themselves easily to descrip-
tions in MSC or SDL should be described in semi-formal prose and structured
comments.

- Narrowing: Find out what questions were not addressed in the prose version and
make decisions on these matters.

- Supplement: Make sure that the precise description covers all those cases which
the prose covers.

5. Associate every role with objects of the object model (Alignment).

Panel Local StationControl

Code

OK

submsc AC System

Unlock

Card out

pseudo-
message

Central Unit

Code
Code

OK

OK Synch

submsc heading

decomposed
TIMe at a glance - 95 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

Object and Property Models - and the Languages for describing them
Property Modelling

TIMe
TIMe Report
Guidelines
for Design
Property
Modeling

1. Take every service of the corresponding domain model and make sure that all roles
are played by objects in the design structure. Remake all domain property descrip-
tions such that they refer to the design software structure which is preferably in SDL.

2. Make the descriptions more detailed by:

- Decomposition: Transform the descriptions such that they apply to the substruc-
tures of the objects and not only to the objects themselves.

- Breaking down: Break down the messages and higher level protocols such that
their internal structure becomes known.

- Revelation: Reveal new instances and messages which prove to be interesting
when a more detailed view is to be described.

3. Having reached a precise and detailed description, make sure that it is covered by the
precise, but more abstract corresponding domain description.

4. Make sure to retain the structured comments and associated semi-formal prose of the
domain descriptions in the corresponding design descriptions.

5. Use the design MSC property model as base for producing SDL process skeletons.
The automatic production of skeletons can be used for discovering inconsistencies in
the MSC property model. The produced skeletons should then be compared with the
design object model and a complete design SDL model should be produced.

From MSC Property Models to SDL Object Models
The title of this section can be a little misleading - the fact is that what may be obtained
is the construction of SDL Skeletons from MSC Property Models.

MSC is a formal language which is well suited to express cases of interaction between
instances. SDL is a formal language which is well suited to express the total imperative
behavior of processes one by one. The two notations have different perspectives on a
system which supplement each other well.

We shall not always expect the MSC descriptions to cover all possible situations, but
those situations which are covered are important. We should make sure that at least these
situations are properly handled in the corresponding SDL descriptions.

TIMe provides a simple technique to produce SDL process skeletons for instances of
MSCs. In order to have the produced SDL be a part of the final design it is necessary to
make the MSCs so detailed that the instances of the MSCs correspond directly to pro-
cesses of the SDL design. By careful use of local and global conditions in the MSCs, the
SDL skeleton can be automatically derived.

From the SDL skeleton, the design process will add more behavior in order to cover all
aspects of the process behavior. These supplements should not violate the behavior
which was already generated in the skeleton. Since MSC does not have a formal data
concept, the addition of tasks and decisions is one major activity when supplementing
an SDL skeleton.

Even though a skeleton is only supplemented, it may be necessary to perform analysis
to ensure that the final version of the SDL actually is consistent with the requirement
MSCs.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1496 -

List of figures
Property Modelling

TIMe
TIMe Report
List of figures

TIMe activities, descriptions and languages . 9
The core themes of TIMe covered in this introduction, and supplementing themes 11
Verification and Validation . 12
Sesam Sesam Inc . 15
Matching objects and properties . 21
Required and provided properties . 22
Simple interaction property model. 22
Interface and application given aspects . 23
Domain, environment, and systems . 25
Context/content . 27
UML for object modelling . 29
MSC for interaction properties . 30
SDL for design and specification of behaviour . 31
The main activities in TIMe. 33
Analysing . 34
Domain Analysis Models and Descriptions for the Access Control Domain 36
Domain Statement V1 . 37
The access control domain. 39
Attribute specification . 39
Domain specific Dictionary . 40
Domain Models . 41
MSC User_accepted. 42
Analysing requirements . 43
System and its environment . 45
Contributions to the different aspects of a system . 46
Context models . 46
MSCs for domain- and system given properties . 47
Property model from domain: MSC User_not_accepted by system 47
System specific property: Blocking Status provided by system and initiated by Operator
47
System Context/Design Outline. 48
Introducing PanelServer and DoorServer as part of AccessPoint 50
Concrete system reference model . 51
Application framework reference model . 52
Specification and design related . 54
From domain objects to design objects . 55
Application design in SDL. 58
Behaviour of Controller according to User Accepted & User Not Accepted 60
Block type AccessPoint with processes . 61
Evolution of domain object model. 63
TIMe at a glance - 97 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

List of figures
Property Modelling

TIMe
TIMe Report
Application and infrastructure specific parts of systems into a framework. 65
Redesigned Access Control system V3 . 66
Cluster with LocalUnits and ClusterUnits . 67
AccessPoint used in both LocalUnit and ClusterUnit . 68
Access Control System type as a framework. 69
Block type Cluster as part of framework for Access Control Systems 70
An actual system based upon a framework . 70
Attribute specification . 74
The access control domain. 75
Possible classification of Access Points according to logging and blocking functionality
75
Environment entities interact with parts of the system . 76
Composite aggregation in UML . 76
Application design in SDL. 77
Block type AccessPoint with virtual Controller process type 78
Virtual process type Controller . 79
Block type BlockingAccessPoint as a subtype of AccessPoint 80
Redefined process type with added states and transitions . 80
Package diagram SignalLib . 81
System using a package of type definition . 82
Mapping classes, relations and connections to SDL . 85
Subclasses of container object classes mapped to block types in SDL 86
Inheritance for signals . 87
Mapping real aggregation to aggregation in SDL . 88
Mapping relation aggregation in OMT to SDL . 89
An MSC . 90
Instance . 91
MSC diagram . 91
Conditions . 92
Alternatives by conditions . 93
Coregion. 94
Decomposed. 94
Submsc. 95
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-1498 -

List of definitions
Property Modelling

TIMe
TIMe Report
List of definitions

Abstract system . 100
Aggregation . 100
Architecture . 100
Attributes . 100
Class with constraints on its environment . 100
Concrete system . 101
Connections . 101
Constructive part of a description . 101
Content . 102
Context . 102
Description. 102
Design oriented development . 102
Document . 102
Framework . 103
Illustrative part of a description . 103
Implementation . 103
Language . 103
Method . 103
Methodology . 104
Non-functional property. 104
Notation . 104
Object model . 104
Physical node . 105
Property . 105
Property model. 105
Property oriented development . 105
Real aggregation . 106
Relations . 106
Relation aggregation . 106
Role . 106
Software node . 107
Specification . 107
Synthesis . 107
System . 108
System family . 108
System instance . 108
Validation . 108
Verification. 108
TIMe at a glance - 99 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

List of definitions
Property Modelling

TIMe
TIMe Report
Abstract system
An abstract system is a system which exists in a conceptual, abstract world.

Abstract systems are composed from abstract components.

Aggregation
All non-trivial systems are composed from components. The process of putting compo-
nents together to form a whole is called aggregation. Aggregation enables us to associate
a single concept and a name with a composite object. This helps to simplify matters con-
siderably when we are dealing with the object as a whole. But to build the object and use
it correctly we need to understand what it consists of.

An aggregate is an object in itself and the part objects are parts of this object only. This
is in contrast to aggregation just by using ordinary relations.

The opposite process of decomposing a whole into parts is called partitioning (or
decomposition).

We distinguish between relation aggregation and real aggregation.

Architecture
An architecture is an abstraction of a concrete system representing:

• the overall structure of hardware identifying at least all physical nodes and intercon-
nections needed to implement an abstract system;

• the overall structure of software identifying at least all software nodes, software com-
munications and relations needed to implement an abstract system (in terms of
processes, procedures and data).

Attributes
Attributes of objects are “value” properties that are not covered by part objects (aggre-
gation). Attributes are defined by a name and a type. In Domain Object Models this is
informally specified, but it is still worthwhile to use a type that will be defined as an
attribute type or class in the Design Object Model.

For the specification of attributes in UML, see attribute specification in UML.

For the specification of attributes in SDL, see variable definition in SDL.

Class with constraints on its environment
Classes are often defined with a specific purpose in mind, and especially for the behav-
iour of a class (typically becoming a process type in SDL) it is necessary to know what
other processes will be in the environment. This is typical for the scenario with several
equally “important” objects that have to co-operate in order to do a task. It will, how-
ever, reduce the reusability of the class in other contexts where these other objects will
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-14100 -

List of definitions
Property Modelling

TIMe
TIMe Report
not be. A quite different scenario is the specification of a typical “server” object class
that should work in any context and where the behaviour is independent on the behav-
iour of the client objects.

A specification of a class with constraints on it environment contains the following
elements:

• The class definition in focus may contain a definition of the attributes of the class (the
intention).

• The environment of a class is important for the understanding of its purpose and con-
straints. Therefore, the environment of importance has been depicted outside the
class. Entities in the environment represent roles.

• When the class is instantiated there will be entities in the actual instance environment
that will play the roles. Therefore, all instances must comply with the roles given to
them by the other instances.

A class definition may include a prescription of what we consider a valid instance envi-
ronment. The entities and relations in the environment of a class represent roles that
shall be played by actors in the environment of an instance of the class.

Concrete system
A concrete system is a real system which is part of the physical world.

In TIMe, concrete systems are composed from physical parts and software that execute
to provide services to its users.

Connections
Objects are connected if they are involved in communication with each other. This is
different from objects being related, as this will only imply that the objects may be
reached by navigating along the relations.

When using SDL as the design language, connected objects will mainly be objects that
will be represented by blocks or processes in SDL.

Constructive part of a description
A constructive part of a domain object or property model description is a part that may
be automatically transformed into a corresponding design.

Examples are parts of object models with relations that may be transformed to database
schemes; a subtype relation between two types in the domain object model that is trans-
formed to the corresponding relation between the corresponding SDL process types.
TIMe at a glance- 101 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

List of definitions
Property Modelling

TIMe
TIMe Report
Content
The content of an object model consists of a structure of internal entities or a behaviour.
The structure may be decomposed over several aggregation levels. The structural com-
ponent may be instances of types defined in other object models.

Property models associated with the content will specify properties of internal objects
and interfaces.

Context
The context of an object model consists of the entity being modelled, considered as a
black box, and its environment, where the environment consists of other entities that are
known to or that interact with the entity being modelled. This serves to describe the envi-
ronment and the interfaces as well as other external relationships.

The environment of a type consists of conceptual entities, called roles, relations and con-
nections. The environment of an instance consists of actual entities playing the roles.

By associating property models with the context it is possible to specify the external
properties that the object provides, as well as the properties it requires from its
environment.

Description
A description is a statement or account that describes. It is a symbolic representation that
enablse communication and reasoning about some subject. Descriptions may be
expressed on a variety of media using a variety of languages and notations.

In TIMe, descriptions are contrasted with documents, which are considered as the phys-
ical carriers of descriptions.

Design oriented development
An approach to system development where systems are understood and maintained
mainly in terms of abstract design description in some notation or language.

Design oriented development is at a lower process maturity level than Property oriented
development, but higher than implementation oriented development, where “the code
documents the system”.

Document
A document is a piece of paper, a booklet, etc.; providing information esp. of an official
nature. In TIMe Documents are physical carriers of information. This information may
be local to that document, or it may be fetched from descriptions and models (whole or
partial models). Documents are often made for specific occasions and audiences, e.g. a
contract, a review document, a user manual.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-14102 -

List of definitions
Property Modelling

TIMe
TIMe Report
A description or model may appear in several documents, therefore the descriptions or
models should be maintained separately from the documents.

A document may be seen as a “snapshot” at a particular point in time. As such it need
not be maintained, although it may be.

Framework
A framework is an abstract system or a collection of (large) system component with two
parts:

• a redefinable application;

• a configurable infrastructure that takes distribution into account, and contains all
additional behaviour and supporting functionality needed to support the application
in the concrete system.

Illustrative part of a description
An illustrative part of a domain object or property model description is a part that is not
automatically transformed into a corresponding design.

Implementation
Implementations are detailed and precise descriptions of the hardware and the software
that a concrete system is made of. They define the physical construction of systems in a
system family. The software part will be expressed in programming languages such as
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagrams or VHDL.

Language
By a systems engineering language we mean a formal description technique (FDT). This
means that not only the alphabet (notation) must be defined, but that both syntax (gram-
mer) and semantics (meaning) of the language must be defined.

Examples of systems engineering languages are SDL, MSC, LOTOS, ESTELLE.

Contrast to Notation.

Method
A method is systematic way of producing some result.

In systems engineering a method provides guidelines for structuring and using descrip-
tions in given notations.

Contrast to Methodology.
TIMe at a glance- 103 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

List of definitions
Property Modelling

TIMe
TIMe Report
Methodology
A methodology is a collection of methods and guidelines for when and how to use them
to produce a result.

In systems engineering most results take the form of descriptions expressed using some
notation or language. A systems engineering methodology therefore prescribes a set of
descriptions and associated methods.

A systems engineering methodology is used by an organisation in an attempt to achieve
right quality, short lead times and low cost.

Non-functional property
A non-functional property is a property which is not measurable in an abstract system.

Non-functional properties can be related to the handling of abstract systems, for instance
that they are flexible. More often they are related to the concrete system, and express
physical properties such as size, weight and temperature.

Performance, real-time responses and reliability are considered to be non-functional
properties in TIMe, since they cannot be measured in the abstract systems.

Notation
A systems engineering notation consists of symbols (an alphabet) that can be used to
model or describe a concept or entity.

A notation is less formal than a Language, in that the syntax and/or the semantics are not
formally defined.

Examples of notations are OMT, UML, ROOM, SA/SD, SADT.

Object model
An object model defines static object structures in terms of objects, classes (types), asso-
ciations and connections, and dynamic object behaviour in terms of signals and state
transitions.

These are models that describe how a system or component is composed from objects,
connections and relationships, and how each object behaves.

The term object model is a bit misleading, as object models normally describe general
types (sometimes called classes) and object sets rather than individual objects. A type is
a concept. According to the classical notion of a concept, it is characterised by:

• extension, the collection of phenomena that the concept covers;

• intention, a collection of properties that in some way characterise the phenomena in
the extension of the concept;

• designation, the collection of names by which the concept is known.
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-14104 -

List of definitions
Property Modelling

TIMe
TIMe Report
Representing concepts by types and phenomena by instances of these types follows this
pattern: the instances belong to the extension, the type definition gives the intention and
the type name represents the designation. The term object model as we use it in TIMe
covers objects as well as types.

Object models are constructive in the sense that they describe how an entity is composed
from parts, be it abstract or concrete.

In TIMe, every object model should have associated property models.

Physical node
A physical node is a distinct physical entity, such as a computer, that implements one or
more abstract system objects.

A physical node operates concurrently with other physical nodes.

Physical nodes may be aggregated and decomposed, but always in such a way that
abstract objects are contained within physical nodes.

Property
A property is a quality or characteristic attribute, such as the strength or density of a
material.

In TIMe we speak of functional/abstract properties and non-functional/concrete proper-
ties associated with objects.

Properties are not components that can be used to build systems. They are measures we
use to characterise and evaluate systems by. Let us compare to a brick: the brick itself is
an object we can use to build something with (e.g. a fireplace), its physical measures are
properties we may use to select the particular type of brick and to plan the fireplace, but
not to build with. Thus, properties are not components to be used in constructions, but
means to understand, select and plan constructions.

Property model
A property model is a model that states properties of a system, a component or a single
object without prescribing a particular construction. Property models are not construc-
tive, but used to characterise an entity from the outside. There are many kinds of
properties: behaviour properties, performance properties, maintenance properties, etc.
This is the perspective preferred by users and sales persons. It is also the main perspec-
tive in specifications.

In TIMe properties will be expressed mainly using text and MSCs.

Property oriented development
Property oriented development is characterized by an integration of:
TIMe at a glance- 105 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

List of definitions
Property Modelling

TIMe
TIMe Report
• better product planning through focus on the early stages of system development, in
particular domain analysis and requirements specification;

• emphasis on system families, evolution and reuse;

• formal expressions of required and provided properties;

• quality-by-construction through integration of methods for verification, validation
and design synthesis.

Property oriented development is at a higher process maturity level than Design oriented
development.

Real aggregation
Real aggregation is supported by UML.

Real aggregation implies:

• that the part object is only part of one object, and

• that possible relations specified with the part object (class) as endpoint only hold for
the part object and not for all objects of this class.

UML adorns the association with a filled diamond and calls it composition.

Relations
A relation represents application specific relationships between objects of the involved
classes. Instances of a relation are called links and consist of tuples of object references.
Structural “relations” such as subclass-of and part-of are not regarded as relations, but
as separate constructs.

Relations can be used either as the basis for automatic generation of the corresponding
part of functional design (e.g. a database part of the design) - that is as constructive parts
of the conceptual model, or as illustrations of properties that will be “implemented” in
some way in the design.

Relation aggregation
This is the form of aggregation where the part objects are just related to the composite
object with a special relation, but still just a relation. This was the only form of aggre-
gation supported by OMT.

UML adorns the association with a hollow diamond and calls it aggregation.

Role
is a behavioral pattern which describes how one acting object performs a set of related
services.

From Webster:
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-14106 -

List of definitions
Property Modelling

TIMe
TIMe Report
• 1a: a character assigned or assumed

• 1b: a part played by an actor or singer

• 2: Function

Roles are used to describe properties, and are related to object designs by projection.
Roles are used to link properties and objects. Projections are used for synthesis of new
objects and for documenting existing objects.

Software node
A software node is a distinct software entity, such as a software process (a concurrent
thread), that implements one or more abstract system objects.

A software node will often operate concurrently with other software nodes, but not
always.

Software nodes may be aggregated and decomposed, but always so that abstract objects
are contained within software nodes.

Specification
A specification covers those aspects of a model that are relevant for its external repre-
sentation and use. The context part is often sufficient as a specification, but if parts of
the content are important it may be included in the specification. Specifications are asso-
ciated with the abstractions they belong to.

Synthesis
In TIMe, synthesis is an activity that produces a design from a specification.

Two basic techniques are used to synthesize a design:

1. Transformation. A source description is transformed to a target description according
to well defined rules. One example is to generate code from an SDL design.

2. Composition. The content is decomposed into parts (top down) and/or composed
from parts (bottom up) using a mixture of manual and automated techniques. TIMe
seeks to reuse existing types as much as possible, and to make new types that might
be needed reusable. Thus, design with reuse and design for reuse is part of TIMe.
Design with reuse involves:

- searching for existing types having some desired properties;

- adapting the properties to fit the particular application.
TIMe at a glance- 107 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

List of definitions
Property Modelling

TIMe
TIMe Report
System
A system is a part of the world that a person or group of persons during some time inter-
val and for some purpose choose to regard as a whole. A system consists of interrelated
components, each component being characterised by properties that are selected as
being relevant to the purpose.

System family
The System family contains generalised system and component concepts that can be
adapted (configurated) and instantiated to fit into a suitable range of user environments.
They represent the product base from which a company can make a business out of pro-
ducing and selling system instances.

The idea is to focus development and maintenance effort mainly on the families in order
to:

1. reduce the cost and time needed to produce each particular instance

2. reduce the cost and time needed to maintain and evolve the product base.

In TIMe, system families are formally defined as (collections of) types or classes. Where
practical, system types/classes will be defined from which complete system instances
may be generated. In addition the system family contains the component types/classes
that are used to compose the system types/classes.

System instance
A system instance is a (real) system which can perfom behaviour and provide services.

The system instance area of concern contains system instances produced from system
families.

Validation
to establish the fitness or worth of a software product for its operational mission (from
the Latin valere, “to be worth”).

Verification
to establish the truth of correspondence between a software product and its specification
(from the Latin veritas, “truth”).

Bibliography
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-14108 -

References
Property Modelling

TIMe
TIMe Report
References

[1] Bræk, R. and Haugen, Ø. (1993). Engineering Real Time Systems. Hemel
Hempstead, Prentice Hall International 0-13-034448-6

[2] Bræk, R., Gorman, J., Haugen, Ø., Melby, G., Møller-Pedersen, B. and Sanders
R. (1993). Quality by construction exemplified by TIMe - The Integrated Meth-
odology, Teletronikk, Vol 95 (1) ISSN 0085-7130 pp 73-82, 1999

[3] Booch, G., Jacobsen, I. and Rumbaugh, J. (1997a). The Unified Modeling Lan-
guage, Version 1.0, Rational Software Corporation, http://www.rational.com
(January 1997)

[4] Booch, G., Rumbaugh, J. and Jacobsen, I. (1998). Unified Modeling Language
User Guide. Addison Wesley Longman, Reading Mass. 0-201-57168-4 (Octo-
ber 1998)

[5] Douglass, B., P. (199). Real-time UML: Developing Efficient Objects for
Embedded Systems, AddisonWesley Longman, Reading Mass. 0-201-32579-9
(December 1997)

[6] Fowler, M. with Scott, K. (1997). UML Distilled: Applying the Standard Object
Modeling Language. Addison Wesley Longman, Reading Mass. 0-201-32563-
2 (May 1997)

[7] Harel, D. (1987). Statecharts: A visual formalism for complex systems. Scien-
tific Computing Programming 8(3) 231 – 274

[8] Haugen, O. (1997a). Practitioners’ verification of SDL systems, Dr Scient The-
sis, University of Oslo (April 1997) 82-7368-166-1

[9] Haugen, Ø. (1997b). The MSC-96 Distillery. SDL'97 Time for Testing - SDL,
MSC and Trends. Proceedings of the Eighth SDL Forum, Evry, France 23-26
Sept. 1997, Elsevier 0-444-82816-8

[10] ISO (1991) ISO 9646-3 The Tree and Tabular Combined Notation (TTCN),
ISO/IEC JTC 1/SC 21 (“TTCN”)

[11] ITU (1993a) Z.100 ITU Specification and Description Language (SDL), ITU-
T, June 1994, 237 p (“SDL-92”)

[12] ITU (1993b) Z.100 Annex F Specification and Description Language (SDL)
Annex F. SDL Formal Definition, ITU, April 1994, (33+437+183) p (“SDL-
92”)

[13] ITU (1993c) Z.100 Appendix I SDL Methodology Guidelines, ITU-T, July
1994, 129 p

[14] ITU (1993d) Z.120 Message Sequence Charts (MSC), ITU-T, September 1994,
36 p (“MSC-92”)

[15] ITU (1994a) Z.105 SDL combined with ASN.1, ITU-TS, Oct. 19.-27. 1994, 69
p

[16] ITU (1996a) Z.100 Addendum to Recommendation Z.100: CCITT Specifica-
tion and Description Language, ITU, October 1996, 31 p (“SDL-96”)

[17] ITU (1996b) Z.106 Common Interchange Format, ITU-TS, Oct. 18. 1996
(“CIF”)

[18] ITU (1996c) Z.120 Message Sequence Charts (MSC), ITU-T, Oct. 1996, 78 p
(“MSC-96”)
TIMe at a glance- 109 TIMe version 4.0 © SINTEF - Modified: 1999-07-14

References
Property Modelling

TIMe
TIMe Report
[19] Jacobson, I., Christerson, M., Jonsson, P. and Övergaard, G. (1992). Object-Ori-
ented Software Engineering: A Use Case Driven Approach. ACM Press
Addison-Wesley, 0-201-54435-0

[20] Jacobsen, I., Booch, G. and Rumbaugh, J. (1999). The Unified Software Devel-
opment Process. Addison Wesley Longman, Reading Mass. 0-201-57169-2
(January 1999)

[21] Kristensen, B. B., Madsen, O. L., Møller-Pedersen, B. and K., N. (1987). The
BETA Programming Language. Research Directions in Object-Oriented Lan-
guages Eds. B. Shriver and P. Wegner. MIT Press

[22] Olsen, A., Faergemand, O., Møller-Pedersen, B., Smith, J. R. W. and Reed, R.
(1994). Systems Engineering Using SDL-92. North Holland 0 444 89872 7

[23] OMG (1997). OMG Unified Modeling Language Specification, Version 1.1,
September 1997

[24] OMG (1998). OMG Unified Modeling Language Specification, Version 1.2,
July 1998

[25] OVUM (1996). OVUM Evaluates: Configuration Management Tools, OVUM,
London. (December 1996)

[26] OVUM (1997a). Select Enterprise. OVUM Evaluates: Case Products - Issue 34,
OVUM, London. (October 1997)

[27] OVUM (1998b). Object Geode. OVUM Evaluates: Case Products, OVUM,
London. (November 1998)

[28] OVUM (1998c). SDT/Tau. OVUM Evaluates: Case Products, OVUM, London.
(November 1998)

[29] OVUM (1998d). Paradigm Plus. OVUM Evaluates: Case Products, OVUM,
London. (November 1998)

[30] OVUM (1998e). ObjectTeam (now: Cool:Jex). OVUM Evaluates: Case Prod-
ucts, OVUM, London. (November 1998)

[31] OVUM (1999). Rational Rose. OVUM Evaluates: Case Products, OVUM, Lon-
don. (February 1999)

[32] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991).
Object-Oriented Modeling and Design. Englewood Cliffs, New Jersey, Prentice
Hall 0-13-629841-9

[33] Rumbaugh, J., Jacobsen, I. and Booch, G. (1998). Unified Modeling Language
Reference Manual. Addison Wesley Longman, Reading Mass. 0-201-30998-X
(December 1998)

[34] Telelogic (1999). Methodology Guidelines. The SOMT Method. Telelogic
Manual SDT 3.5, Malmø

[35] Verilog (1999). ObjectGEODE - Method Guidelines. Verilog Toulouse, France
TIMe at a glance TIMe version 4.0 © SINTEF Modified: 1999-07-14110 -

	Table of Contents
	Introduction
	Figure 1: TIMe activities, descriptions and languages
	Figure 2: The core themes of TIMe covered in this introduction, and supplementing themes
	Figure 3: Verification and Validation
	TIMe from SISU
	What’s in TIMe for the manager
	What’s is TIMe for the designer

	The Why, What and How of TIMe
	Figure 4: Sesam Sesam Inc
	Introduction

	TIMe Essentials
	Figure 5: Matching objects and properties
	Figure 6: Required and provided properties
	Figure 7: Simple interaction property model
	Figure 8: Interface and application given aspects
	Figure 9: Domain, environment, and systems
	Table 1: The three aspects of the access control system
	Figure 10: Context/content
	Figure 11: UML for object modelling
	Figure 12: MSC for interaction properties
	Figure 13: SDL for design and specification of behaviour

	System Development Activities
	Figure 14: The main activities in TIMe
	Analysis
	Figure 15: Analysing
	Domain analysis
	Figure 16: Domain Analysis Models and Descriptions for the Access Control Domain
	Domain Statement: what is it all about
	Figure 17: Domain Statement V1
	Domain object model: modeling the established domain concepts
	Figure 18: �The access control domain
	Figure 19: Attribute specification
	Dictionary: not just a data dictionary
	Figure 20: Domain specific Dictionary
	Domain property model: modeling the needs
	Figure 21: Domain Models
	Figure 22: MSC User_accepted
	Requirements analysis
	Figure 23: Analysing requirements
	Figure 24: System and its environment
	Application specification
	Figure 25: Contributions to the different aspects of a system
	Figure 26: Context models
	Figure 27: MSCs for domain- and system given properties
	Figure 28: System specific property: Blocking Status provided by system and initiated by Operator
	Figure 29: System Context/Design Outline
	Figure 30: Introducing PanelServer and DoorServer as part of AccessPoint
	Architecture specification
	Figure 31: Concrete system reference model
	Framework/Infrastructure specification
	Figure 32: Application framework reference model
	Table 2: Application, framework and architecture aspects for the access control system

	Design
	Figure 33: Specification and design related
	Application Design: where the real functionality is designed
	Figure 34: From domain objects to design objects
	Figure 35: Application design in SDL
	Figure 36: Behaviour of Controller according to User Accepted & User Not Accepted
	Figure 37: Block type AccessPoint with processes
	Figure 38: Evolution of domain object model
	Architecture Design: choice of implementation platform
	Framework Design: from Infrastructure to Framework
	Making infrastructure
	Figure 39: Application and infrastructure specific parts of systems into a framework
	Figure 40: Redesigned Access Control system V3
	Figure 41: Cluster with LocalUnits and ClusterUnits
	Figure 42: AccessPoint used in both LocalUnit and ClusterUnit
	Making frameworks
	Figure 43: Access Control System type as a framework
	Figure 44: Block type Cluster as part of framework for Access Control Systems
	Figure 45: An actual system based upon a framework

	Implementation
	Instantiation

	Object and Property Models - and the Languages for describing them
	Object Modelling
	UML for Object Modelling
	Figure 46: Attribute specification
	Figure 47: �The access control domain
	Figure 48: Possible classification of Access Points according to logging and blocking functionality
	Figure 49: Environment entities interact with parts of the system
	Figure 50: �Composite aggregation in UML
	SDL for Structure and Object Behaviour
	Figure 51: Application design in SDL
	Figure 52: Block type AccessPoint with virtual Controller process type
	Figure 53: Virtual process type Controller
	Figure 54: Block type BlockingAccessPoint as a subtype of AccessPoint
	Figure 55: Redefined process type with added states and transitions
	Figure 56: Package diagram SignalLib
	Figure 57: System using a package of type definition
	Guidelines on Object Modeling
	From UML Models to SDL Models
	Figure 58: Mapping classes, relations and connections to SDL
	Figure 59: Subclasses of container object classes mapped to block types in SDL
	Figure 60: Inheritance for signals
	Figure 61: Mapping real aggregation to aggregation in SDL
	Figure 62: Mapping relation aggregation in OMT to SDL

	Property Modelling
	MSC for Property Modelling
	Figure 63: An MSC
	Figure 64: Instance
	Figure 65: MSC diagram
	Figure 66: Conditions
	Figure 67: Alternatives by conditions
	Figure 68: Coregion
	Figure 69: Decomposed
	Figure 70: Submsc
	Guidelines on Property Modeling
	From MSC Property Models to SDL Object Models

	List of figures
	List of definitions
	Abstract system
	Aggregation
	Architecture
	Attributes
	Class with constraints on its environment
	Concrete system
	Connections
	Constructive part of a description
	Content
	Context
	Description
	Design oriented development
	Document
	Framework
	Illustrative part of a description
	Implementation
	Language
	Method
	Methodology
	Non-functional property
	Notation
	Object model
	Physical node
	Property
	Property model
	Property oriented development
	Real aggregation
	Relations
	Relation aggregation
	Role
	Software node
	Specification
	Synthesis
	System
	System family
	System instance
	Validation
	Verification

	References
	About TIMe and the SISU project
	About the authors

