T | M @ TIMeElectronic Textbook

-TI Me at a glance

INErOodUCLION . .. oo

TIMe from SISU . ..o
What'sin TIMe forthe manager i e e e
What's is TIMe for the designer e e e

TheWhy, Whatand Howof TIMe. i,
INtrOdUCHION . . . o
TIMeEESSENtialSo
System Development ACtIVItIES

ANAIY SIS, . e
DSION . . .ot e e
IMplEMENtAtioN e
INStANtIAtioN.
Object and Property Models

- and the Languagesfor describingthem
Object Modellingo
Property Modelling e

List Of fIQUIES . . oo

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMe at aglance

4-1

- Introduction Tl Me

| ntroduction

The Integrated Method (TIMe) supports design oriented devel opment, an approach to
system development where systems are understood and maintained mainly in terms of
abstract design descriptions. It even goes one step towards making the vision of property
oriented development come true.

TIMefor ~ TIMeisdesigned for systemsthat are
what? .

* reactive,

e concurrent,

* read-time,

* distributed,

» heterogeneous and

e complex.

TIMeiscentered around a set of models and descriptions capable of expressing domain
knowledge, system specificationsin terms of external properties, system designsin
terms of structure and behaviour, implementation mappings and system instantiation.

Like most other similar methods, TIMe distinguishes between Analysis, Design, Imple-
mentation and Instantiation (see Figure 4-1 (p.4-3)).

4-2 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

How TIMe
is different

Introduction -

Figure4-1: TIMe activities, descriptions and languages

Open figure

s

Analysis N

Domain Descriptions

(Domain Analysis)

Object Property
Models Models

System Family descriptions

(Requirementsanalysis)
J

.

-
-

Design)

(Application design
(Framework design

Architecture design

J

Specifications I

MSC,
UML

Design Models

Object Property
Models Models

(Implementation '

Implementation I

SDL

-

.

Instantiation)

Configuration

Instance Descriptions

Building

Instance
configuration

(Testing),

J

» designissplit between

>I Concrete system I

The distinction between Domain and System Designisnot particular for TIMe. What is
special, however, isthat:

application design, where the functionality of the system is design,
architecture design, where the non-functional properties are taken care of, and

framework design, that definestypes of systemswith the same infrastructure (e.g.
supporting distribution) where the application specific parts are singled out to be
redefinable in specific systems.

 the complementary object models and property models are used both for domain and
system analysis, and for design.

TIMe provides:

» aset of system development activities that covers most of the system development
process, with emphasis on the activities |eading to implementation,

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

TIMe at aglance 4-3

- Introduction Tl Me

Object
oriented

Abstract
models

Property
models

Service
orientation

Roles

Design for
reuse

Synthesis

Designwith
reuse

4-4

guidelines on object and property modeling in general, and particularly how to do it
in UML [147] / SDL [102] - [104], [108] and MSC [105],[110] respectively, and

tutorialsin UML, SDL and MSC.

TIMeistruly object oriented in its approach. It defines its own underlying object and
property models, and contains detailed guidelines on:

how to make analysis object models using Unified Modeling Language (UML),

how to make design object models using Specification and Description Language
(SDL), and

how to make interaction property models and Use Cases using Message Sequence
Charts (MSC).

TIMeis characterised by:

Emphasis on abstract models and descriptions: Abstract descriptions leave out
implementation specific details and | et the devel opers focus on functionality.

Focus on (external) properties. Objects are the building material from which systems
and components are constructed. Property descriptions are used at an early stage of
development to express the properties required from a system or an object. At alater
stage they are used to express the properties actually provided by a system or
component.

Userstend to think in terms of services and interfaces. Therefore TIMe recommends
use of separate property models for services and interfaces. These models are used
for high level service engineering, and for synthesising object designs that provide
the services.

Strong object-property relationships: Roles are used to describe properties, and are
related to object designs by projection. Roles are used to link properties and objects.
Projections are used for synthesis of new objects and for documenting existing
objects.

Planned variability and reuse: TIMe seeks to make generic system familiesthat may
be adapted as easily and safely as possible to the needs of particular systems. Com-
ponents for reuse across families come from general domain descriptions. TIMe
describes a cost-effective way to define instantiation of particular systems by defin-
ing the general parts by reference to the family description, detailing only what is
special for that particular occurrence, i.e. its configuration.

Design synthesis. Property oriented design involves:
- Decomposing required service and interface properties into object properties.

- Synthesizing object designs from required object properties, by transformation
and by composition, taking reuse into account.

- Comparing properties: required against provided (validation).

Searching for components with provided properties corresponding to some
required properties.

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

Goal of this
document

Focus

Introduction -

- Composing properties corresponding to object composition.

This document providesthe TIMe Essentials (p.4-14), intended for readers that would
like to know why they should use TIMe, get afeeling for what TIMeis, if it appliesto
their needs, how it differs from other similar methods, etc.

The focus in this document is the core of TIMe, that is system development activities
with the combined use of UML, MSC and SDL for making models, based on acommon
approach to object modeling and property modeling, with emphasis on the early stages
of system development. Asindicated in Figure 4-2 (p.4-5), TIMeis more than this.

Figure4-2: Thecorethemesof TIMe covered in thisintroduction, and supplementing themes

Open figure

Configuration
management, that is
management of

The activities
of maki @,
(with object modelsand
property models)

In

Tech-
niques
for

improve-
ment
of

Verifying

UML/SDL/MSC
using

development processes

Ino §[s U dKe
families

against
requirements

This introduction can be read as a stand-alone document, but when read in el ectronic
form, and integrated with the full method book, it also works as an introduction, with
hyperlinks to the whole method.

The section The Why, What and How of TIMe (p.4-9), together with the last part of
TIMe Essentials (p.4-14) will tell you why you should use TIMe and what is special
about it. Object and Property Models - and the Languages for describing them intro-
duces UML, MSC and SDL for those that are not familiar with them. TIMe Essentials
(p.4-14) provides an overview. Therest of the document is organized mainly according
to the development activities of the method (see System Development Activities).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMe at aglance 4-5

- Introduction Tl Me

Supple- Asmentioned above, the full method book of TIMe containsimportant el ementsthat for

menting reasons of space are not covered in thisintroduction:
elements of

TIMe

Figure 4-3: Verification and Validation

Open figure
domain .
Verification domain
family
specification
Verification
Validation design
C Verification
Validation
Validation implementation Verification
Validation instance Tstance
configuration

needs
3

» Verification and validation deals with “validation”, meaning to determine “whether
we are making the right system” and “verification”, meaning to determine “whether
we are making the system right”. TIMe presents several different approaches to ver-
ification and validation that correspond to different maturity levels of the companies
(or projects):

- test orientation: performed on the implementation of the system.

- inspection orientation: involves human readers who control the quality of the
descriptions.

- animation orientation: executions of the system based on descriptions on higher
abstraction levels than implementation.

- formal analysisorientation: used in order to prove statements about the system, or
to disclose hidden aspects of a system.

- synthesisorientation: theimplementation can be synthesi sed from a description of
the requirements.

TIMe presentstechniqueson all theselevels. TIMe considers constructiverulesto be
superior to corrective measures.

4-6 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| Me Introduction

TIMe fromSSU

» Process improvement deals with the introduction of TIMe into acompany, and also
covers process monitoring and improvement in general.

We talk about achieving improved productivity and quality by setting goals and fol-
lowing one of several improvement methods, like “Mean & Lean”, the Capability
Maturity Model (CMM) or the Risk Management Approach.

It also discusses Risk Assessment and Control, aswell as Change Cost Analysisand
measuring the effect of introducing new tools and methods.

» Software configuration management covers how to control a product (in terms of
descriptions) asit evolves. It describes levels of control and management, and
describes means to cope with the complexity of product management.

It presents our view on Configuration Management, which should help in defining
plans for projects and companies.

We identify 3 levels of control and management that can be useful: to achieve Con-
figuration Management we need a platform for Configuration Control. To achieve
Configuration Control we need a platform for Version Control.

We give an indication of what can be obtained by state-of-the-art tools at each level.

» Metricsisabout measurement in software development, afield that is known as met-
rics or software metrics. TIMe gives the answers to the questions

- Why are we collecting measurement data?
- How shall we collect measurement data?
- How will we analyze the measurement data?

A method that focuses on this, GQM - The Goal Question Metrics, is presented. It
al so discusses how to define useful metrics, and presents a few individual metrics.

TIMe from SISU

TIMeisadevelopment of the Norwegian SISU | methodology described in Engineering
Real Time Systems (Brask and Haugen 1993, [24]). TIMe has been continually devel-
oped sinceitsinception in the SISU project (1988 - 1996), see http://www.sintef.no/sisu
- and hasitsnamefromthefact that it consistsof anintegration of method elementsfrom
different parts of the project. For people with no relation to the project, TIMe could as
well have been an acronym for The Interesting Method, The Important Method, etc.

What'sin TIMefor the manager

TIMesaves Experience from the SISU project has show that TIMe can give you:
timefirst

time 50% reduction in errorsin delivered systems

 reduced development costs equalling or surpassing the cost of introduction on the
first project

e 20% or more reduction of development costs on subsequent projects

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMe at aglance 4-7

Introduction Tl Me

What's is TIMe for the designer

* better control over the development process
» more flexible staffing, with less dependency on individuals
» smoother cooperation between professionals

when TIMe s carefully introduced into an devel opment organisation, compared to a
non-TIMe development paradigm. Some of these claims are proven by metrics pro-
gramsin the SISU project, while others are based on interviews with managers.

What'sis TIMe for the designer

TIMeisfun Systems and software designers using TIMe typically experience
» more focus on designing functionality
* more precise communication with peers on design issues
 the pleasure of smulating (executing) designs at an early stage
» modern, state-of-the-art development tools

* less dependence on detailed development environment know-how, more focus on
domain knowledge, making for easier shifts to new projects

* easier maintenance, smpler error correction

« theinitia burden of learning a new development paradigm being outweighed by a
better working environment and more job possibilities

compare to apre-TIMe setting.

4-8 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

The Why, What and How of TIMe

Introduction

The Why, What and How of TIMe

Sesam Sesam

decided to go Object Oriented (OO),
like rest of the world. Some years ago
thiswould have been atough decision,
but now it looked asif thiswasthe only
right thing to do. The languages and
tools were mature and there was plenty
of help to get from books, courses and
consultants - the problem was rather
that there was too much help to get.

Figure 4-4: Sesam Sesam Inc

Open figure

INSERT YOUR CARD

|
B

Jo

[
=

=)
I

insert card here

=

DN | WVS3S WVS3S

For many years, the company had great
success with their door locks and sys-
tem keys. Their selling point was the
highly flexible way that keys and locks
could be coded to give user groups dif-
ferent access rightsin a building com-
plex.

But even their system had two main
drawbacks: Lost keys and Code limita-
tions. Whenever a key was lost, they

I ntroduction

had to change the locks to prevent un-
authorised persons to gain access. Al-
though the system was very flexible, it
was based on fully mechanical locks
and keys with inherent limitationsin
the coding.

To overcome these problems and to
stay in front of competition the Sesam
Sesam people were continuously look-
ing for improvement opportunities.
They saw that electronics and comput-
erswererapidly becoming attractive al-
ternatives as the prices went down and
thereliability up, so they decided to go
for plastic cards and panels with key-
boards and displays at the access
points.

The reason for going OO was that they
would try to come in a situation where
each delivery was composed from gen-
eral components - up till now they had
experience each delivery as almost a
separate implementation. However,
they also knew that their systemswould
be rather complex, involving real-time
constraints and consist of large parts
that were reactive of nature, so the
choice of languages, tools and methods
was not obvious.

They bought atool, consulted the ac-
companying method book, and got the
advice (in a condensed version): “Just
find the objects (they are there to pick)
and you will have the structure of your
system”.

For the development of complex telecom, real-time or reactive systemsin general, a

promising combination isto use:

» Object Orientation as a common approach to analysis, design and implementation,

with concurrent processes as objects,

 Interaction Scenarios for the specification of communication between users and sys-
tems (use cases) and between objects of systems;

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

TIMe at aglance

4-9

The com-
bined use of
UML, MSC
and SDL

Why not
just UML?

The Why, What and How of TIMe TlMe
Introduction

» State/Transition based specification of behaviour of individual objects.

Object orientation helps to master complexity by structuring in terms of objects and by
factoring out common propertiesin general classes. Objectsdo not live on their own but
communicate with other objects. Interaction Scenarios help to describe and understand
even the most complex interaction cases. Describing the behaviour of each object in
terms of states and transitions that are triggered by incoming signals from other objects
has proven to be of great value for thiskind of system.

TIMe supports this combination by the integrated use of
e UML for object model analysis,

* MSC for interaction scenarios, and

» SDL for specification and design of behaviour.

UML and SDL both support object orientation, there are tools integrating them, and the
sametools also support MSC. UML isan OMG standard, while SDL and M SC are stan-
dardsfrom ITU.

UML is accepted by the Object Management Group (OMG) asa Visua Modeling Lan-
guage, and has received much attention from the software engineering community. The
establishment of the UML Revision Task Force gives the potential methods user confi-
dence that this will become the new industry language for systems design. However,
UML is not mature enough to be adopted in its present form as a design language in an
industrial context:

» Thelanguageisnot yet stable, with considerable changes between 1.0[21], 1.1 [146]
and 1.2 [147].

» Support for real time conceptsisonly partial

» Thelanguage is not formally defined, with a self-referential meta-model and a
semantics written in prose.

» Theinterchange format is not yet stable.

» Several textbooks exist [22], [51], [60], [112], [166], but many include features that
do not adhere to the approved standard [146].

* Notoolsfully support UML, although many promise they will [149], [155], [156],
[157].

For thesereasons UML isnot yet the ultimate, all-compassing language that itsfounders
aimitto be. TIMerecognizesUML asasubstantial improvement over predecessorslike
OMT [165], and currently recommendsthat parts of UML be used, along with industrial
description languages like MSC and SDL, especidly for illustrative sketchesin early
phases. If UML turns out to be what its founders aim at, while MSC and SDL do not
evolve, TIMe may in the future become a UML methodology.

Presently we believe the combination of UML along with SDL and M SC following the
formal rulesto be defined by the ITU in the forthcoming Z.109 standard “ SDL with
UML” isthe most promising. Thisisthe strategy taken by the major SDL tool vendors
[153], [154].

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

Introduction

T”\/Ie The Why, What and How of TIMe -

What about OMT [165] isin widespread use, and many tools are available. TIMe sees OMT as an

oMT? informal notation (not alanguage), and recommendsthat OMT be used in the same way
as UML, so that the transition from OMT to UML hasllittlerisk involved. Version 3.1
of TIMeincluded an extension to OMT called OMT+-, which has now been
discontinued.

Why UML Some companies have an established use of MSC/SDL, but for early analysis they nor-

andnotjust mally useinformal drawings. In order to becomealittle more precise, it could be argued

DL? that SDL can be used for this purpose. It has benefitsin that it will easethe shift to design
in SDL, but we advocate the use of UML for the following reasons:

* UML models do not require the same degree of formalization as SDL models do,
» UML supports relations (associations) between objects,

» UML supports fragments of object models, e.g. specifying relationsin one fragment
and attributes/operations in another.

However, TIMealso advocatesthat SDL isused for object modellingin casethisis most
appropriate. Asan example, if it isimportant during analysisto specify some main states
(modes) the system may be in, then this may directly be specified in SDL, as opposed
to Statechartsin UML.

Why MSC Some companies have chosen to go Object Oriented by means of UML or OMT. Tools
and not for UML support Sequence Diagrams (and OMT tools supported Event Traces) for the
Sequence formulation of properties of interactions, and to some degree these are integrated with

Eri T theobject modelling. The reasons for choosing MSC are still:

Traces? » MSC ismore precise and richer in expression than Sequence Diagrams or Event
Traces. HMSC, M SC references, conditions and in-line expressions are some of the
distinguishing features of MSC.

» Theinstancesin a Sequence Diagrams or in an Event Trace are objects from the
object model, but often they should rather just be roles played by objects. Instances
in MSC diagrams can represent both objects and roles.

Why SDL Insomeliterature on state machine based specification of behaviour, Statecharts[76] as
and not used in UML isthe preferred notation. The reason for thisis that the notion of nested

Cshztis? statesis appealing and that it produces compact specificati onsl. Statecharts alone s,
however, not a complete language. It does not define communicating objects with data
having the behaviour specified, so other notations and/or tools often add this. The main
reason for using SDL is exactly that:

» SDL isacomplete language that defines communicating objects (processes) with
data attributes, operations and behaviour in terms of states and transitions;,

it also defines a structure of subsystems (blocks), and

» because it is a complete language, tools can (and do) support code generation from
SDL specifications, and the integration with MSC allows for some degree of formal
verification and validation.

1. Thereare currently initiativesin the I TU standardisation work to introduce nested statesin SDL. Thiswork
is near its conclusion, and will be part of the year 2000 revision of SDL.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-11

Are MSC
and SDL
perfect?

Why a sepa-
ratemethod
on the com-
bined use?

Why use
TIMe?

The Why, What and How of TIMe TlMe
Introduction

I'n addition, inheritance from the object model can be directly mapped onto inheritance
for SDL process types, including inheritance of attributes, operations and behaviour
(that isinheritance of states and transitions). Thismeansthat, if desired, itispossibleto
inherit “functionality” and not just “interfaces’.

Another line of reasoning isthat an interchange format for SDL descriptions between
different toolsis standardised [109] - this eases the transition from one tool vendor to
another.

The above discussions are not meant to promote MSC and SDL as “the perfect lan-
guages’. They are not. There are thing we missin MSC, such as guard conditions,
transitions names and the possibility to express constrains. There are things missing
from SDL, not only the obviouslack of relations (which we recommend be expressed in
UML), but al'so anumber of niceties such as substates (i.e. the compact description they
give, which SDL Procedures lack), for/while loops, expressions of algorithms and a

dozen other issues.!

Neither MSC nor SDL are capable of formally defining execution time constraints, or
expressing exact real-time behaviour in terms of processinterleaving. Hence TIMe does
not address mission-critical, “hard real-time” systems. Certain vendor-dependent solu-
tions to this are provided by tool vendors [153].

We nevertheless recommend that M SC and SDL be used for the types of systems target
by TIMe for detailed design and systems generation in an industrial context. MSC and
SDL have proved themselvesin many real-life projects, and are mature, albeit not per-
fect. UML is still promiseware.

In conclusion, the combined use of UML, SDL and M SC seems agood idea. But there
are still some issues to consider when using two slightly different object oriented
approaches as represented by UML and SDL.:

 uncritical useof relations (associations) will lead to problemswhen turning to design
in SDL;

» aggregation was a special association in OMT, while UML and SDL support “real
aggregation” (called composition in UML);

e UML (and OMT) supports multiple inheritance (the semantics of which will first
become clear during design), while SDL supports single inheritance only - careful
use of inheritance is therefore an issue.

In addition comes the object orientation you may have to use when considering distri-
bution, e.g. CORBA, and thisis yet another approach. TIMe has the answer on how to
isolate the application specific aspects from the distribution aspects.

There are already anumber of methods supporting the combined use of UML, MSC and
SDL, two of these are supported by tool vendors[174], [180]. Still there are somevalid
reasons for using TIMe:

1. Work is currently being carried out in ITU SG10/Q6 and Q9 to enhance the “year 2000” versions of MSC
and SDL with such features.

4-12

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T”\/Ie The Why, What and How of TIMe -

Introduction

* Most methods have a bias towards object modeling - “just find the objects and you
are done’. TIMe comes with a system reference model and emphasises property
modeling as equally important as object modeling. Property modeling includes use
case modeling as a special case.

» TIMehasan answer to where the design objects come from and does not just provide
technical guidelinesfor how to go from UML to SDL.

» Asamechanism not supported by other methods, TIMetellsyou how to make frame-
works in SDL. Frameworks produce the most effective reuse.

» TIMerepresents many years of experience with system development and object
orientation.

» TIMe bridges the gap between the user’s world of needs and the designer’s world of
objects.

TIMe can be used as a supplement to other methods. Tool vendor specific methods will
always be useful, as their elements most probably will be supported by the tools.

Howtouse TIMeisavailable both as printed material and as an “electronic book”. The electronic

TIMe? version allowsyouto follow linksin order to read what you want, e.g. at a specific stage
in the development process. The electronic version allows for company specific exten-
sions, with links into and out of those parts of TIMe that are used.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-13

TIMe Essentials

TIMe

Introduction

TIMe Essentials

Systems
and system
descrip-
tions

4-14

This section gives adescription of the essential elementsof TIMe and what makesit dif-
ferent from other methods.

TIMe is asystem development method. A systemis apart of the world that a person or
group of persons during some time interval and for some purpose choose to regard as a
whole, consisting of interrelated components, each component characterised by proper-
tiesthat are selected as being relevant to the purpose. A system isnot adescription on a
piece of paper, but something actually existing as a phenomenon in thereal world. This
puts the system apart from the description of the system. The system actually exhibits
behaviour, while its description is a dead pile of paper.

Systems made by means of TIMe (and by means of many other methods) are produced
by making descriptionsin avariety of languages and notations. These descriptions pre-
scribe how systems should be generated by having computers and similar equipment
(platforms) execute these descriptions.

Systems consist of objects. In order to describe them, classes of objects are defined and
described. In short, methods consist of approaches, guidelines and techniques for iden-
tifying and describing classes of objects.

With the advice “ Just find the objects
(they are there to pick) and you will
have the structure of your system”, the
development group at Sesam Sesam
imagined the picture below. Thisis of
course oversmplified, but in fact most

to the object modelling.

It turned out, how-
ever, that these
people were so
heavily stuck in
the(ir) real world

change PIN code

block access
point

methods they consulted advocated no thatthey couldonly
more structuring of systems than this. thinkintermsof re- acceptireject
This had to do with the fact that most quired (or desired) users

object oriented languages support only
aflat structure of objectswith relations
- aggregation isjust a special relation
between objects.

properties of the

system as such (in

terms of functions, list of functions, fea-
tures, requirements, etc.). They had the
picture of asystem asillustrated above,
that isalist of services.

Some of these serviceswere defined on
the basis of use cases. With these two

access
zone

access
point

panel |, ..

The process of finding the objects (or
rather classes) was driven by the devel-
opers, but management had learned that
OO0 was the best way to model the real
world.

The peoplethat wereinvolved with this
real world were the market people and
the people responsible for customer so-
lutions. They were therefore brought
into the process and asked to contribute

TIMe at aglance

very different perspectiveson asystem,
it was no surprise that finding the ob-
jects turned out to be finding the “de-
sign/implementation” objects, and that
properties were not taken into account.
Finding objects by functional decompo-
sition was, correctly, regarded as a bad
thing, and was not considered at all. So
where had all the propertiesgoneinthis
new object oriented way?

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TlMe TIMe Essentials
Introduction -

Properties TIMe has the two dimensions properties and objects as integral parts of the method.
and objects

Systems A system consists of a set of objects. Objects are described by:

it of :
gg?:cts_o * object models, that model how asystem or aset of related classes are composed from

Objectsand objects, connections and relationships.

ﬁ;%ems Systems and objects have properties (both provided and required). Properties are
properties described by:

» property models, that model the properties of a system or object without prescribing
aparticular content or implementation.

Object models are constructive in the sense that they describe how an object is com-
posed from parts, and is the perspective of designers. Property models are not
constructive, but are used to characterise an object from the outside: behaviour proper-
ties, performance properties, maintenance properties, etc. Thisisthe perspective
preferred by users and sales persons. It is also the main perspective in specifications.

TIMe provides some of the answersto the challenge of system development: to identify
objects and give them properties so that they contribute to the properties required of the
whole system, see Figure 4-5 (p.4-15).

Figure 4-5: Matching objects and properties

Open figure
A properties
change PIN D %
block access & e
accept/reject D
objects
|
access pane| . access

Properties A central ideain TIMeisthat every object (and system) is characterised by provided
properties that can be matched against required properties (see Figure 4-6 (p.4-16)).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-15

TIMe Essentials TIMe
Introduction

Figure 4-6: Required and provided properties

Open figure
Verification
& Validation
required properties .<——| provided properties

development

Of special interest are interaction properties,

where a property involves the interaction MSC User_accepted

between the system and one or more users of User AccessGranting
the system or other systemsin the environ- [1] 1
ment, or between objectsin the system. The PIN

“accept/reject user” property in Figure 4-5 -
(p-4-15) isan example of this: it involves the

user entering the card and code to the system, g oK

and the system answering back with either OK

or not OK to enter. In Figure4-7 (p.4-16), part

of thisis specified in MSC. — —

Figure 4-5 (p.4-15) only indicates that access | Figure4-7: Simpleinteraction
point objects are involved, but during the property model

design we shall seethat both panelsand a cen-

tral unit will be involved.

Roles TIMemakesit possibleto express property model swithout referring to specific objects.
Sometimes we need to specify properties without knowing the objects they shall be
associated with, and we may want several different objects to share the same properties
(e.g. acommon interface). TIMe also makes it possible to compose the properties of an
object from parts described in different property models.

The notion of role makes this possible. Roles are used to represent objects in property
models, and we may compose the properties of an object from roles described in differ-
ent property models.

One of theinstancesinthe MSC in Figure 4-7 (p.4-16) is“ AccessGranting” . Thisisnot
an object of the object model, but afunctional role. Behind this name can be hidden any
structure of interacting objects. At some point in the development it is necessary to asso-
ciate the functional role with an object of the object model. We call this synthesis.

TIMe uses three main categories of roles:

4-16 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

Interface
and appli-
cation
given
aspects

TIMe Essentials
Introduction
» serviceroles, which are the observable behaviour of an object in agiven service;

* interface roles, which are the observable behaviour at given interfaces;

» association roles, which are the conceptual constraints on objects that participate in
associations (relationships).

After having clarified that both object « “We have the main user panel, and

and properties are supported, the group we have the gates where users get
at Sesam Sesam went for the TIMe access to the system. We also have
method and gave it atry. They were the mandatory objects that control
successful in working together towards the equipment, without those there
acommon object model. The market would not be any system.”

people saw that their functions (proper- .

ties) would be combined with objects,

and that object modellingwasnotthe Thjsprocesswasdriven by anumber of

only activity. use cases, so it was not surprising that

. “OK, we started by making an the group ended up with an object mod-
obj ect model of the current system el where the dominant object was the

asit appearsto its usersin the real main user interface object of the sys-
world - now what do we have?’ tem. Most of the properties became as-
sociated with these objects.

TIMe makes a distinction between the (user) interface given aspects of objects, and
application given aspects of objects, see Figure 4-8 (p.4-17).

In some cases these are two differ-

ent sets of objects, in other cases interface given / application given
they arejust two different aspects of

objects - thisisindicated by the object obje>:tj object,
jagged linein Figure 4-8 (p.4-17). /

The important thing is to make the
distinction and be able to maintain
it. The interface may change e.g.
with new technology, while the
application objects providing the service properties of the system will typically have a
longer life.

Figure 4-8: Inter face and application given
aspects

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-17

Systems
belong to
domains
and are
used in
environ-
ments

4-18

TIMe Essentials

TIMe

Introduction

We shall later see that the application given aspects can be decomposed into system

given and domain given aspects.

After having learned the distinction be-
tween interface specific and application
specific objects, the question was how
to get at some reasonable application
specific objects. The people at Sesam
Sesam were experts on their kind of
equipment and other technical systems
that were to be used, so they identified
objects that modelled this equipment
and other (technical) systems and de-
vicesin thereal world of the system.

The object model turned out to have,
not a black box, but awhite hole at the
place where the system object model
was supposed to be. The problem was:
what kind objects should the core of the
system consist of; it was obvious that
there would be objects that handled the

user interface and the interface to other
systems, but apart from that??

» Saysthe TIMe consultant: “What
about adomain analysis’

* “What wasthe word again? And
what doesit mean?’ saysthe project
leader.

* “OK” - saysthe TIMe consultant -
“what isthe system all about, irre-
spectiveof how itisrealised, what is
the basic problem(s) that the
intended system is supposed to
solve; which kinds of entities and/or
eventsin the so-called real world or
in your imagination are handled by
the system?’

TIMe makes a distinction between a domain, the systems within the domain, and the
environments in which the systems are used. While systems belong to adomain, in that
they handle the same types of phenomena, they exist and are used in an actual environ-
ment, see Figure 4-9 (p.4-19). Accounting systems are different from access control
systemsin that they belong to different domains. The example system in this introduc-
tion to TIMe belongs to the access control domain, and that includes phenomena and
conceptslike access points (where users get access or not), access zones (to which users
would like to get access), PIN codes, etc.

The domain modelsapart of thereal world having similar needs and terminology where
a system instance may be a solution to some need. The domain is not specific to a par-
ticular system or system family, but rather to a market segment. It covers common
phenomena, concepts and processes that need to be supported irrespective of particular
system solutions.

Required properties derived from an actual use situation may come in addition to the
properties stemming from adomain. Properties required by the actual environment and
by its realization are very specific, while domain-given properties are often more gen-
eral and express idealized needs.

TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

After this distinction it turned out that

the project team at Sesam Sesam were
not only experts on the technical parts,
but they a so knew what the system was

TIMe Essentials
Introduction

backwards and identifying entities and
eventsin the domain and representing
these by object classes, they arrived at
some domain specific classes that may

supposed to do. By taking one step be candidates for objectsin the system.

Figure 4-9: Domain, environment, and systems

Open figure

N
S
environ-

ment
(e.g.operator)

(e.g.user)

Domain Environment

The access control domain hasto do
with controlling accessto access zones,
based on e.g. card codes and optional
PIN codes. Users present their cards
and PIN code at a number of access
points. Some access points may be
blocked even if avalid codeis entered,
while other access points may log what
goes on at the site. Users may aso
change their PIN code.

The environment of a specific access

control system may in addition to the
users have operators that have other re-
guirements to the system, e.g. getting
the status of access points.

General propertieslike accessgranting
come from an analysis the domain,
while propertiesthat haveto dowiththe
specific use of the system (e.g. how to
read cards and control doors) and oper-
ator requirements come from an analy-
sis of the environment.

Domain, Domain objectsand their properties are not enough to provide the required properties of
interface the whole system. Many general properties can be provided by the domain given

and system ghyiects, but some properties will often be required in addition. For instance properties
gggits related to the operation and maintenance of a specific system.

Thisisreflected in the system reference model of TIMe: In addition to the domain and
interface given (aspects of) obj ects, the application given objects may have some aspects
that are special for this specific system, in addition to the general properties of domain

given objects.

The object model of a system istherefore divided into three aspects:

» the domain given aspects

* the system given aspects

TIMeat aglance 4-19

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Abstract

and con-

crete
descrip-
tions

TIMe Essentials TIMe

Introduction

 theinterface given aspects.

These aspects may be whole objects or
just aspects of objects. interface < system domain
Domain given aspects come from an given given gven

analysis of the domain, interface given object; ob}éctj object,
aspects have to do with user interface, /
interface to other systems or to con-

trolled equipment, while system given aspects are those aspects that arise because there
isasystem, and that are specific for the system.

Domain given aspects have alarger potential for being reused in other systemsin the
same domain than the system given aspects, and interface aspects may have to be mod-
ified when the interface technology changes.

Theinterface given aspects of the access control system areillustrated in Table 4-1 (p.4-
20).

Table 4-1: The three aspects of the access control system

interface given tem qiven aspects domain given
aspects system given asp aspects
e panel for entering || » operator e access points
card code, PIN requirements . aCCESS ZONeS
andfordisplaying |, | 4jidationshall be
messages to the done by a central usars
U unit * accessgranting
+ door control, - backup .
unlocking the .
door requirements

Descriptions suitable for execution by existing platforms contain alot of detailed, con-
crete description elements (implementation details, platform specific details, etc.).
Descriptions suitable for system developersin their strive to match required properties
expressed by users, owners 0.a. are preferably more abstract in the sense that they
describe systemsin terms that reflect established concepts within a given domain.

TIMe achieves abstraction by supporting UML and MSC for analysis models and SDL
for design models. UML is a notation that enables informal, abstract object models,
M SC describes use cases and interaction between objects, and SDL supports abstract

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TlMe TIMe Essentials
Introduction -

descriptions that (by including concrete description elements) automatically may be
transformed to concrete implementations. The use of abstract descriptions is one of the

In the access control system example, (including pure hardware components),
the systemis the collection of panels, interface description of the hardware
doors and program executions running components, SDL descriptions of some
on some processor(s), while systemde- of the program executions, and (con-
scriptions will include (abstract) over- crete) Javaor C++ codefor the SDL run
view descriptions of the total system time system and for hardware drivers.

main ingredients in property oriented devel opment.
Abstract descriptions are organised in two main parts:

Application ¢ an application part that describes what the user environment wants the system to do;

Infrastruc- * an infrastructure part that describes additional behaviour and supporting functional-
ture ity that needs consideration, e.g. in order to fully smulateitsbehaviour. Thismay e.g.
include support for distribution, exception handling etc.

The reason for this distinction is that systems within the same domain and in the same
family (see below) often will have the same infrastructure part, but different application
parts. Reuse of infrastructure is eased by keeping them separate, and application evolu-
tion issimplified.

Concrete model s describe the implementation architecture. Thisisahigh level descrip-
tion of the physical implementation. The purpose isto give aunified overview over the
implementation and to document the major implementation design decisions.

Each object has attributes and behaviour, isrelated to other objects, and is structured for
two different reasons:

Context 1. sothat it models the corresponding domain entity and representsitself adequately to
the objects in the context of the object (for the system object this means the objects
in the environment);

Content 2. sothat the object iscompletely defined with respect to itsrealization on the executing
platform. We will talk about the contents of the objectsin contrast to its context, see
Figure 4-10 (p.4-21).

Analysiswill produce specifications of objects,
while design and implementation activitieswill pro- objects properties
duce designs of objects. In specificationsthe object context
context and external properties are defined. Some

limited parts of the content may also be specified, M\

content

specffication

seeFigure4-10 (p.4-21). Inthe design theremaining degign
content is defined. The specification of an object

includes what is needed to use the object - and that

may be more than just an interface specification. Figure 4-10: Context/

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-21

Families

Frame-
works

Applica-
tion and
infrastruc-
ture

TIMe Essentials TIMe

Introduction

When deciding upon what belongs to the domain and what is more system specific, the
main distinction is between the domain and single systems within the domain. During

development we often think in terms of making one specific system. Wetalk about the
“system” and the “domain”, and about e.g. “ system specification” and “ system design”.

Itis, however, fruitful to think in terms of families of systems and really make “ system
family specifications’ and “ system family designs’. The ideais to focus devel opment
and maintenance effort mainly on the families, in order to reduce the cost and time
needed to produce each particular instance, and to reduce the cost and time needed to
maintain and evolve the product base.

A system family isa generalised system or set of component types (classes) that can be
configured and instantiated to fit into a suitable range of user environments. They rep-
resent the product base from which a company can make a business out of producing
and selling instances.

TIMe provides guidelines on how to make system familiesin addition to single systems.
Where practical, system types and classes will be defined from which complete system
instances may be generated.

The notion of framework is one important mechanism for defining families of systems.
A family comprises morethan just atype of system from which several system instances
can be generated. In addition a family includes e.g. the necessary documentation, man-
uals, etc. that make up a complete product.

At the heart of asystem family liesthe partsthat are generated from an SDL design. This
may either be a complete SDL system, a set of SDL systems, or a set of general block
types and process types that can be (re)used for making systems.

The SDL descriptionswill be organised according to the distinction between application
and infrastructure. It isnormally the casethat different systemswithin afamily will have
the same infrastructure but slightly different application parts, and when making differ-
ent systemsit isdesirable not to change or even consider the infrastructure part (besides
what it offers). A framework defines the composition of the infrastructure parts and
application partsin such away that different systems can be made by only changing the
application parts.
Saysthe people at Sesam Sesam: “We oriented programming languages, but

have seen frameworks work for win- we guess frameworks are not for us,
dow systemsandimplementedinobject now that we have chosen SDL...

The notion of framework isnot special for TIMe. Within the field of object orientation,
aframework iswell-known (* In object oriented systems, a set of classes that embodies
an abstract design for solutionsto a number of related problems.” - Free On-line Dic-
tionary of Computing), and there are good examples of frameworks, e.g. window
systems. The use of frameworks supports the (re)use of whole designs and not only sin-
gle classes.

What isspecia for TIMe, however, isthat thisideais adapted to SDL. A framework can
be defined as an SDL system type, and the different systems as instances of subtypes of
this system type. TIMe provides detailed guidelines for how to do this.

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T”Vle TIMe Essentials
Introduction -

Languages The main languages and notations of TIMe are UML, MSC and SDL. For readers not
andnota- familiar with these, please consult Object and Property Models - and the Languages for

iﬁ\r/]ls of describing them. The following is a very short introduction.
e

TIMeat aglance 4-23

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

UML for
analysis
and design
object
modelling

MSC

for specify-
ing
interaction
scenarios

DL

for design
and for
specifying
behaviour

4-24

TIMe Essentials
Introduction

TIMe

TIMe uses aUML for object modeling in terms of

classes (with attributes and operations) representing application specific concepts,
with relations (associations) and communication links;

inheritance between classes in order to express specialization of application
concepts,

e aggregation, that is objects defined by means of part objects.

TIMe definesits own approach to object orientation, and UML is used as a notation for
expressing this. UML matches the TIMe object orientation better than OMT.

Figure4-11: UML for object modelling

Open figure
relation

AccessZone /

supercl subcl

classes
with rela-
tions and
communi-
cation links

Classes
may be
defin
Sub-
classes/

Blocking v
Access Point]

Access Point

Logging
Access Point]

User

AccessPoint
s <>

class L f
communication

part-object

AccessPoint

classes may
be defined by
means of ag-
gregation,
that is con-
sisting of ob-
jects of other
classes

Panel

Central
Unit

Door

User Controller /

TIMeuses M SC asitsbasic notation for property modeling. M SC highlightsinteraction
between instances based on messages. Instances may represent objects from some
object model or just roles played by some objects. A message is asynchronous, the out-
put must come before the corresponding input. The events on the timeline of aninstance
are strictly ordered, and the distance between eventsis not significant.

An MSC document consists of a set of MSCs. Different M SCs within the same MSC
document are related by conditions. A condition is alabel which signifiesaglobal or
local state. Conditions can be used to mark situations where there are different alterna-
tive continuations, and they may describe looping.

I nstances may be decomposed, in order to seethe details of thisin termsof further MSC
diagrams.
SDL isthe main language for design, and the only language for specifying behaviour.

An SDL system consists of anumber of blocks, connected by channels. Each block may
either consist of a substructure of blocks, or of a set of processes connected by signal
routes.

TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T”Vle TIMe Essentials
Introduction -

Processes execute concurrently, communicate by sending signals (non-synchronized),
and have their behaviour described in Finite State Machines extended with variables,
procedures and transitions.

SDL may define types and subtypes of systems, blocks and processes.

Figure4-12: MSC for interaction properties

Open figure

interaction | msc User_accepted
between User AC System initial
instances |7 , it .
for specify- | < [dle > condition
ing use Code
cases

.
o .
<—K Unlock ~ \decomposmon
/ —

final -
{__ Door unlocked /1 ~

condition ~
[=== “

7 7 o

submsc de- | submsc’/AC System
scribing a de- /" panel \ Controller Central Unit
composition of YA \ I I

one of the in- | Cpde > Code
stances in the / 4—» Code

superior msc, /
e.g. for design | “caq out «— OK g
purposes -« \

/1 oK
-« nch
/ L Unlock >

/ —— \ —— ——

/
; altl \alt2

msc Unlocked ‘timeout msc Unlocked_reset

_\

User / AC System User | ACSystem
I;I _'_1 |
{___Door unlocked > Door unlocked >

oor door
Push door £

Opened>
E— Closed

|
4 Idie > Lock

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-25

TIMe Essentials TlMe
Introduction

Figure4-13: SDL for design and specification of behaviour

Open figure

An SDL system SYSTEM AccessControl 1(1)
consists of a num- /bl ock block
ber of blocks, pos- || AccessPoint)9/

sibly accordingto |~
blocktypes. Blocks yce e oo, o 1Ctel
are connected by / (outp)] AccessPoint | [walidity] C

channels +

gat BLOCK TYPE AccessPoint /=r=omcs 10| ‘channel with
[,
[(inp)

P
CE [¢
| I PRl (N Door ™~ process type
[(outp)] € | outp)]
. [(validity)] 1 [open\\ pro-
/ P yicode] fopened, | o — signal route
/ P p\ closed] M
| apc: < [(validity)]
Controller U [>

[(validity)] CU [Code] | ¢ [Code]

VIRTUAL PROCESS 18— start

s
< Idle > <Validation 5 unlockDoot |<———— procedure refer-

—

Code VIRTUAL VIRTUAL e~ Input
(cid,PIN) OK NOK
[| |
cur_panel := OK NOK | output
SENDER TO cur_pan> TO cur_par; < p
|
unlockDoor procedure call
v
Validation “ (Idle)
[Code] [opened,closed] [(validity)]
%
P I [(validity)] P [open,close] UI [Code] gates

D]

4-26 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

System Development Activities
Introduction

System Development Activities

i

The following overview of TIMe is structured according to system devel opment activi-
ties, and the corresponding kinds of models and descriptions are introduced along with
the activities. In this overview emphasisis put on the activities leading to
implementation.

This chapter covers the following activities:
e Analysis(p.4-28)
Domain analysis (p.4-29)
- Domain Statement: what isit all about (p.4-31)
- Domain object model: modeling the established domain concepts (p.4-32)
- Dictionary: not just adata dictionary (p.4-34)

Requirements analysis (p.4-37)

- Application specification (p.4-40)

- Architecture specification (p.4-45)

- Framework/Infrastructure specification (p.4-46)

Design (p.4-48)

- Application Design: where the real functionality is designed (p.4-49)

- Architecture Design: choice of implementation platform (p.4-58)

- Framework Design: from Infrastructure to Framework (p.4-59)

Implementation (p.4-66)
e Ingtantiation (p.4-66)

Guidelines on Object and Property Modeling are provided in a separate chapter (Object
and Property Models - and the Languages for describing them). These are modeling
techniques that are part of many activities and therefore most conveniently covered in
one place. That chapter includes guidelines on the matching of properties and objects,
and on the transition from UML to SDL object models.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-27

System Development Activities TIMe

Analysis
Figure 4-14: Themain activitiesin TIMe
Open figure
e Analys h i ipti
nalysing Domain descriptions Dictio-
nary
(Analysing domain) Donjain
modgels State-
ment
System Family descriptions
(Analysing requirements ’
- / Dictio-
4 Designing) il
(D — — State-
esigning application ment
App[caion |
Designing f k N
Designing architecture
_ J
Implementing Implementa:
tion
(Instantiating)

Instance descriptions

Configuring
Instance Implemen- Auxiliary
| tati
: Building] models ations
Testing oncrete
system

- J

L

Analysis

The objectives of analysis are to understand the domain and what users and other stake
holderswant to achieve, i.e. their needs, to find improvements to existing systems, or to
plan new product familiesthat will give valuable improvement and thus create business
in the future.

4-28 TIMe at aglance TIMe Electronic Textbook v 40 © SINTEF Modified: 1999-07-16

TIMe

Product
Planning

Why
domain
descrip-
tions?

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

System Development Activities

Analysis
Figure 4-15: Analysing
Open figure
Business plan,
product strategy
(Analysing)
Analysing Domain
22 i I
Market An_alysi ng
people, us- requirements
ers, design- Y Andlysing pp—
o A ™ sudies
experts
Specifying gl Family |
descriptions
- J
-
- Family
descriptions

Own systems,
competing
systems

Product planning is another word for analysis. Product planning is a strategic process at
the company level. Itsmain goal isto consider needs existing in the market and plan new
products or enhancement to existing products. Few tasks are more critical to the success
of acompany than its product planning. Product development is a process which pro-
duces the new products or product enhancements that are planned.

At the product planning level, domain descriptions are used to collect and organize
domain knowledge in away that will enable product development to work more
efficiently.

At the product level, product families will enable faster and more cost effective config-
uration and production of system instances, while common components will be used to
develop product families more efficiently.

Product planning consists of two main activities: Domain analysis and requirements
analysis. Thetask of thelatter isto plan what parts of adomain to support by anew sys-
tem family and to specify its required properties.

Domain analysis

Thefirst analysiswill bean analysis of the domain. Thisincludesidentifying which phe-
nomena and concepts (like access zones, access points) are part of the domain, with
focus on concepts. The result is represented by two domain models:

TIMeat aglance 4-29

Domain
object
model in
UML

Domain
property
model in
MSC

Dictionary

Domain
statement

4-30

System Development Activities Tl Me

Analysis

* A domain object model, that is a collection of classes with attributes, relations and
communication connections that describe the general concepts of the domain, with-
out going into details needed for design and implementation.

- UML isthe main notation used for this kind of modeling, but if it for some reason
should be important to describe some general states and transitions, then SDL is
used.

* A domain property model, that isadescription of properties of domain object classes,
and of roles.

- Domain objectsdo not haveto bejust “ data (passive) objects’, so properties may
involve interaction properties - they are described using MSC. Other kinds of
properties are described using natural text, e.g. organised in lists of required prop-
erties. If interaction properties are not obviously associated with objects from the
domain object model, we will say that they are associated with roles.

Two additional domain descriptions are recommended:
* Adictionary, that isalist of terms with an explanation of their meaning, including

each of the elements of the domain object model. A dictionary is not just adata dic-
tionary, it also includes definitions of concepts that exhibit behaviour.

- Dictionaries are described by structured natural text.
* A domain statement, that is a concise description of the domain with focus on stake

holders and their needs, the essential concepts, functions and work processes, rules
and principles.

- Itisnormally sufficient to express the domain statement informally using natural
language and drawings, but one should try to be as clear and precise as possible.

These models and descriptions represent the understanding of the domain common to
users, owners and developers of systems in the domain, see Figure 4-16 (p.4-31).

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

Tl M e System Development Activities

Analysis

Figure4-16: Domain AnalysisModelsand Descriptionsfor the
Access Control Domain

Open figure

domain object domain property
model model

User

Acce

AccessZone

AccessPoint]

domain statement dictionary

Access control hasto acCess
do with controlling point: ...
the access of usersto access
acCCess Z0nes. ... zone: ...

user: ...

Domain

Domain Statement: what isit all about

The domain statement leads to the very first understanding of what the domainisall
about. It helpsto clarify needs and to understand the real purpose of systemsin the
domain. It also serves as an introduction to the other domain descriptions.

The domain statement can often be based on existing prose descriptions. There may be
descriptions of earlier systems, there may be textbooks on the subject and there may be
informal statements about the system.

Domain By considering similar systems on the market, by analysing the needs and by consulting

Satement domain and market experts, the short Domain Statement V1 (p.4-32) iswritten. It seeks
to describe what is special for this domain in contrast to other domains, and is used to
guide what to include and not in systems.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-31

System Development Activities

Analysis

Open figure

Figure4-17: Domain Statement V1

TIMe

Area of concern

Access control hasto do with controlling the access of usersto
access zones. Only a user with known identity and correct
accessright shall be allowed to enter into an access zone. Other
users shall be denied access.

Sakeholders

Users of the system, those responsible for the security of the
access zZones.

Services
The user will enter an access zone through an access point.

The authentication of a user shall be established by some
means for secret personal identification (code). The authorisa-
tion isbased upon the user identity and access rights associated
with the user.

A supervisor will have the ability to insert new usersin the
system.

Users shall be able to change their secret code.
Helpers

We assume some central means to establish access rights
automatically.

Domain object model: modeling the established domain concepts

Classesand A domain object model describes the domain from an object oriented perspective. It

defines classes which represent concepts in the domain, and objects which represent
phenomenain the domain. It defines the attributes, the operations and the behaviour of
objects as well as associations and communication connections between objects.

TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

* The Sesam Sesam project |eader

tries: “Aha, so domain modelling
resembles the way database applica-
tions are made: we make a data
object model for the domain, that is
the objects that the systemsin the
domain must know about, and then
we make different database applica-
tionswith this dataobject model asa
basis.”

“Thats right, we know in fact that
we have to keep a database of what
users have ordered, so that they can
be billed, so that statistics can be pro-
duced, etc.” says a project member.

“OK, thisseemsto beafairly simple
distinction: “passive’ data objects
for the domain and then more
“active” “controlling” application
objects. Asfar as| remember thisis

System Development Activities

Analysis

also the main distinction in the Use
Case approach of ObjectOry” says
another.

Saysthe TIMe consultant: “Thiswill
work asastarting point, and for some
systems thiswill do, but for most
domains we do not have to restrict
ourselvesto regard the domain spe-
cific objects as data objects only: if
there are genera propertiesthat have
to be fulfilled by “active” objects
(that isobjectswith behaviour, witha
life-cycle and often concurrent with
other active objects), then these
objects obviously are domain
objects, and their classeswill be used
for many systemsin the domain. In
TIMethedimensionsdomain-system
and active-passive are two different
dimensions - it is not so that domain
object are always passive and system
objects aways activel”

With this definition of domain object model, it israther straight forward to identify the
domain specific objects. In our example it turned out that some of these were really
“active objects’ (e.g. User and AccessPoint in Figure 4-47 (p.4-70)). Note that this
object model comes about when considering only classes, relations and connections. If
only considering e.g Use Cases, AccessPoint may not have turned up, but rather arole
like AccessGranting.

TIMeat aglance 4-33

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

System Development Activities
Analysis

TIMe

Figure 4-18: The access control domain In this part of

the domain ob-
jectmodel itis
described that
* aUser may en-
ter more than
il | 4 one Access-
W bounded by Zone, and may
therefore use
more than one
AccessPoint.
There may be
more than one
point at which
agiven Ac-
cessZone can

Open figure

AccessZone

1.* A RS

AccessPoint User

be entered and exited.

The User and AccessPoint objectswill be active objects, while Access-
Zone objects are passive. Thisisindicated by the communication con-
nection between AccessPoint and User.

The corresponding property model reflects that User and AccessPoint
interact. Note that User is the class of real Users, and not the class of
User objects eventually representing users within the system.

Figure 4-19: Attribute specification

Open figure
User Access Zone Access Point
Name; string Name: string Name: string
Number: Integer Level: Integer Number: Integer
Level: Integer Access:. key type

Dictionary: not just a data dictionary

The objective of the dictionary isto define terminology and thereby enable precisionin
communication between peopleinvolved. Terminology names the domain specific con-
cepts and defines their meaning.

An important set of conceptsin the dictionary isthe set of conceptsthat are covered by
the corresponding domain object model. There may also be phenomena, like e.g. access
granting, that will not be covered directly by aclassin the object model, but by property
model s involving more than one class of objects.

It isimportant that not only “data’ concepts are included in the dictionary, but that typ-
ical “event”- or “action” concepts also areincluded - hence the name Dictionary and not
Data Dictionary.

TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Analysis

TIMe System Development Activities -

Figure 4-20: Domain specific Dictionary

Open figure

Access point A point of accessinto an access zone.

Access zone A physical or logical zone guarded by a set of access
points.

Authentication To establish the identity of a user.

Authorisation To establish the right of a user to enter an access
zone.

Authorizer The entitity which determines authentication and
authorisation.

PIN A personal identification means.

User A person with known identity with
authorisation to enter specific access zones.

User name A user name.

Access Granting The role of granting (or not granting) a user access.

Domain property model: modeling the needs

A Domain Property Model is used to describe the problem domain from the Property
perspective. It includes functional and non-functional properties.

Functional properties are considered as projections of object behaviour, and are
described using text, role structures and MSC.

Important properties for the systemsthat TIMe isintended for are properties of interac-
tion between parts of the systems and parts of the environment. Some methods
recommend pure role modeling for this purpose: that isall instances involved in inter-
action scenariosareroles played by some objectsthat will be found during design. Other
methods (like UML) use the object model as the basis for interaction scenarios, and
therefore only have objects as instances in interaction scenarios, never roles.

TIMe supportsamixture: if interaction properties are obviously associated with objects
aready identified in the object model, then the property models describe the properties
of these. On the other hand, if the object model has not even been identified, it is still
possible to make interaction scenarios only involving roles. During design, roleswill be
assigned to objects. The relationships between objects and properties areillustrated in
Figure 4-21 (p.4-36).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeataglance 4-35

System Development Activities Tl Me

Analysis

Figure4-21: Domain M odels

Open figure

Domain property models

Domain object models Service-a

Tole _
structure MSC Service-al

Actor-1 view

ayséof/ ---

/ TAterface-x

Tote
eo structure MSC Interface-x1

Plays rol

CrsO——0a
| Text | |
.-

Role Text isused to give atextual explanation of a service or interface. Role structures are

sructures UML instance diagrams that represent the roles of the service or the interface. The
objectsinrole structure diagrams can be considered as anonymous objects. They will be
related to object model objects by role association links, and to the instances in the ser-
vice M SCs through the same name.

When the system is designed, the domain property models will also be valid property
model s of the corresponding (domain given) system objects. Properties belonging to the
domain will be candidates for properties of severa systemsin the domain.

4 - 36 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

Figure 4-22: MSC User_accepted

Open figure

System Development Activities
Analysis

We know that there will
be AccessPoints and that
the Users will interact
withthesein order to enter

MSC User_accepted

User

PIN
-

OK

AccessGranting

L]

an AccessZone, but it is
not obvious if Access-
Points are the objects that
will grant access.

If it isimportant to ex-
press this uncertainty,
then we define Access-
Granting asarole - in oth-
er parts of the
development we will as-
sign thisrole to one or
more objects, and proba-

During domain analysis, Sesam Sesam
used the set of rules/guidelines being
part of TIMe. Thefollowingisalist of
some of these:

* Asadtart, consider how things are
donetoday and describethe existing
domain. Then consider how it may
be improved and develop a new
domain description.

» Focus on abstract objects that are
essentially needed and avoid system
specific solutions. This does not
exclude elements that eventually
will be part of systems. Theessential
thing is that the Problem Domain

bly AccessPoint will be
one of them.

M SC does not take any stand as to what the instances are - an instance just represents
one sequence of events (sending and receiving messages).

generalises over system specific
solutions. Classes of objectscoming
from an analysis of the Problem
Domain are candidates for reuse
across systems, but reuserequires at
least one use.

» For each stake holder, describetheir
needs for services and interfaces.

* Represent every actor asatypewith
context in the object model and
describe its services in property
models.

* When systems are defined classify
the entities into interface, system,
and domain specific parts.

Requirements analysis

This activity produces requirement specifications in terms of context specificationsin
UML or SDL (depending on the desired degree of formality and on the starting point)
eventually supplemented by content specification where this is known and needed in
order to fully specify requirements. Corresponding property specifications are

produced.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

TIMeat aglance 4-37

System Development Activities Tl Me

Analysis

The activity will specify the properties of the systems down to alevel wherethe system
can be evaluated and compared to other possible solutions. It studies different system
aternatives, and it makes requirements on how systems shall be instantiated and how
they may evolve.

Figure 4-23: Analysing requirements

Open figure
Business plan,
product strategy
Domain
B Descriptions
(Analysing requirements \
Analysing System
(s o e [
Specifying \
Developing Family
family statement P statement
Developing Family
% % family dictionary > dictionary >
\/ > Specifying Application
Market A application P specification >
persons,
users, de- Specifying Framework
velopers, L spesication |
production Spedifyi
and sales ecitying i
ersons g ArCh'FeC“_Jre e
p specification
Specifying Family
\ methods j > andiliay |
. J
-

Own systems,
competing systems

In addition it updates the Dictionary (p.4-30) and Domain statement (p.4-30) from the
domain analysiswith elementsthat have to do with theintroduction of aspecific system
(or family of systems) in this domain.

Central to this activity isthe notion of specification, defined thus:

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

System Development Activities
Analysis

TIMe

- A specification covers those aspects of amodel that are relevant for its external rep-
resentation and use. The context part is often sufficient asa specification, but if parts
of the content areimportant it may beincluded in the specification. Specificationsare
associated with the abstractions they belong to.

Require- A requirements specification isadocument whichisnormally produced early in adevel-
ments opment project and used as a contract for the design work. It will contain specifications
specifica- gnd other items of relevance at that stage. After delivery we are interested in the pro-
tion vided properties (i.e. specifications) of the system, and are not interested in the historic
document. TIMe unites these two aspects in the single term specification.
Secifica- Specifications contain the specification parts of Application, Framework and Architec-
tionsvs. ture models (see Figure " Context/content™).
design
Yystemsare Requirements are reguirements to systems. Guiddines for Identify the
partofan Systemswithin the same domain will havein requirements parts that are
actual use common that they handle the samekindsof ~ analysis subject to
ot phenomena. All systemswithintheaccess | p1oe & con reguirements.
control domain will handle access zones, text diagram Use open
access points, and usersthat want to get access with the sys- aggregationto
to access zones. tem as focus illustrate how
- . . and the sys- entitiesin the
A specific system may in addition have prop- tem environment
ertiesthat are needed because the system will environment relatesand are
have other categories of users, e.g. operators detailed. Only connected
that have other requirements to the system, or show parts of with parts of
an owner that e.g. wants statistics on the traf- the en\ﬂ ron- the system.
fic. A specific system may also have :gle:tg tact) garhg Define the
interfaces to other systemsin the system. interface
environment. behaviour of
» Sketch or out- eachrolein
line the the system
system struc- and in the
ture using environment.
UML.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

TIMe at aglance

4-39

System Development Activities
Analysis

TIMe

other systems
e.g. database

log systems

N0
controlled system
processes
e.g. the doors Access

Control e @@\
<> [System
users

(from the
environment)
@‘@\ ad e.g. operator
users

(from the domain)

e.g. persons trying to

enter access zones

Figure 4-24: System and its environment

When an access control system
isconsidered in its use environ-
ment, then there will both be us-
ers from the domain and users
of the actual system (operator).
The “domain users’ will have
their requirementsto the system
(and interface at the access

have other requirements and
have access to quite other parts
and quite different properties of
the system.

It isalso decided that doors are
outside the system, and as such
will be processes that shall be

controlled by the system.
points), whilethe operators will yihesy

Application specification

When analysing and designing a system within agiven domain, the domain modelswill

be of lessuseif the method does provide guidelines on how they contributeto the system
design. In addition to the properties identified as part of domain analysis, there will be
required propertiesthat are specific for this system in its use environment. It is an expe-
rience that interface properties should be treated separately.

TIMe therefore has a system reference model, where these three aspects are treated as
separate issues and contribute differently to the system design, see Figure 4-25 (p.4-41).

4-40 TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl M e System Development Activities

Analysis
;eqmtrements to inter- requirements from elements of
ace 1o users, con- use environment domain models

trolled processes and

other systems i
system

interface / system domain

given given given

object; obj%btj objecty
/

Figure 4-25: Contributionsto the different aspects of a system

The domain model s contribute to the domain given aspects of the system. These aspects
will be more stable than the interface and system given aspects, and the domain given
classes used for design will have a greater potential than the other classes for being
(re)used in other systems in the same domain. That’ sthe motivation for this distinction.

It is recommended to use:

» UML with the system represented by a central class and connections represented by
special relations, or

» SDL with the system represented by a block type with gates (see Figure 4-26 (p.4-
41)).

Access Zone

|—P
User AC-System [*™® %r)era

Access Zone

UML e " g2
lq—p{ bloCk type <> Opera
User AC-System to?

ye

Door

Figure 4-26. Context models SDL

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-41

4-42

System Development Activities Tl Me

Analysis

The choice depends on how close to UML one desires to be or how formal the context
specification shall be. If SDL ischosen, then really only the connections can be shown,
while UML can aso show the relations (connections are special relations).

Such context model s are matched with corresponding Use Cases (also called I nteraction
Scenarios) in MSC, where each connection corresponds to one or more MSC diagrams
(see Figure 4-27 (p.4-42) and Figure 4-28 (p.4-42)).

Figure 4-27: Property model from
domain: MSC User_not_accepted by

system
Open figure One of the Use Cases
. between the domain
MSC User_not_accepted given User and the
User AC-System system isthe one
— I a— | AT S
cepted, because the
Code codeisnot OK. Dur-
- ing system analysisit
is decided that this
< K shall be performed by
the AC-system.
| E— | ——
Figure 4-28: System specific property:
Blocking Status provided by system and ini-
tiated by Operator
Open figure
MSC ProvidingBlockingStatus From the actual use
environment we
Operator AC-system know that the sys

| | | | temswill have op-

BlockingStatus erators, and that
i they will ask for the
blocking status of
i access points. This
< BlockingReport Was not part of the
domain model.

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

Tl M e System Development Activities

Analysis

Reguirements analysis produces a (requirements) specification for the system to be
designed. It may be so that the system has an inherent structure, and that this hasto spec-
ified in order to get the specification right. In that case, the specification includes a
structuring of the system by means of “real aggregation”, and the environment commu-
nicates with the parts of the system (see Figure 4-29 (p.4-43)).

Figure 4-29: System Context/Design Outline

Open figure
AC-System
m
Autho-
—— > Access || Central HIH
User | 4 may Point Unit nzer
* accept 1
1
may use | *
m=100

From the Domain Object access points are merely
Model we get the Access- User servers.
Point object. Thesystem Thisisreflected in asys-

will prOVi deits servi Ce_S at tem context di agram where
anumber of Access Poi I‘ltS, the Syaern Obj ect contains

but validation shall be cen- a set of AccessPoint ob-

tralised, i.e. therewill bea jects and one Central Unit
central unit that takescare ppject.

of thevalidation, whilethe

When specifications include a structuring like this, the corresponding property models
must be changed correspondingly, so that User does not only interact with AC-system
but with AccessPoint, and Operator not with AC-System but with Central Unit.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-43

4-44

System Development Activities
Analysis

TIMe

Application Specificationisa
crucial part of the method. The
following liststhe recommended
activities and guidelines for this
part, some of which have been il-
lustrated above:

» Describe the domain specific
servicesin terms of service
lists, role diagrams and Use
Cases (in MSC). For each of
the active object typesin the
environment, make a context

» Decide on what parts of the

domainthat shall beinsidethe
system and what partsshall be
in the environment, and what
shall not be considered at all.

Represent the system type as
one entity, and show its inter-
connections to entity setsin
the environment. Specify con-
straints and variability of the
entity sets.

Make a (passive) object
model representing the enti-
tiesin the environment that
the system family shall know.

diagram and describe its
active environment in terms
of association roles. Make a
function list and specify the
corresponding service behav-
iour using rolesand MSC. If
possible or relevant, describe
association rolebehavioursas
completely as possible.

Consider the system specific
parts. Identify any system
specific services and system
specific objects (active or pas-
sive) that are needed.

Add system specific entities

to the active and passive
environment.

System analysis may also consider the interface specific properties and specify corre-
sponding context/content models. When the system specification has included parts of
the system (aswith AccessPoint and CentralUnit in Figure 4-29 (p.4-43)), then the inter-
face specification may take that into account. In Figure 4-30 (p.4-45) it has been decided
that the interface of AccessPoint shall beto apanel and to adoor, and the corresponding
objects of AccessPoint have been identified.

TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

System Development Activities
Analysis

Considering Intertace as- shall be presented at the
pects in system analysis: same panel. Correspond-
Itisdecided that thecode ~ ingly, theactual controlling
shall be entered through a of the door issingled out as
panel and that theresulting ~ an interface specific part of
response (OK or NotOK) AccessPoint.

Figure4-30: I ntroducing Panel Server and Door Server as
part of AccessPoint

Open figure

AccessPoint

/ “Domain given \

| User |- + P UserServer |

\ /

/ﬁteTfac_egK/en_____‘___ T T Ty

I |
Panel lag—pp Panel Door |« Door

: Server Server :

\ /

~N —_ e, e e e —_—_ —_— —_— —_— —_— —_— e—_— —_— —_— = —_—— -

Architecture specification

In addition to considering the application specific properties of a system, system analy-
sis may also take requirements on Platform into consideration and specify these.
Platform has to do with non-functional requirements to the implementation, e.g. the
choice of technology, implementation principles, etc.

While the application specification is an abstract description which does not take phys-
ical aspectsinto account, the Implementation is considered as a concrete description. A
central ideain the methodology isto describe abstract systemsin away that can be
understood and validated without knowing how they are implemented.

The concrete description is composed from real hardware and executabl e software. The
concrete system will have an Application part where we find the implementation of the
abstract system, and asupport part containing additional functionality needed to execute
the application. It will often be distributed and have additional support for internal com-
munication, see Figure 4-31 (p.4-46).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-45

System Development Activities Tl Me

Analysis

Figure 4-31: Concrete system reference model

Open figure
Application SW
I S D
Infrastructure
Support SW
HW —>
[]e>
Application SW
I S D
Infrastructure
Support SW
[Je» AW « >

For the access control system, Architecture Specification amountsto specifying e.g. that
plastic cards shall be the means for identification, and that implementation code for the
software parts shall be generated from SDL designs and based on an existing runtime
system.

Framework/I nfrastructure specification

Consideration of issues like distribution, systems management, etc., that is behaviour
that has to be part of the system but does not contribute to the services it provides, pro-
duces the Infrastructure specification.

The application Framework is an abstract system which takesinto account concrete sys-
tem issues such as distribution and error handling. It consists of a distributed
Application part, and an Infrastructure part.

TIMe recommends developing arefined and restructured, complete functional specifi-
cation reflecting the concrete system and the implementation dependent requirements,
and turning this into a Framework specification, asillustrated in Figure 4-32 (p.4-47).

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

Tl M e System Development Activities
Analysis
Figure 4-32: Application framework reference model

Open figure

redefinable

' Application

i LV |
=] = =/ -/ 3
O O O O configurable
& - = —

e

A

Infrastructure |« Infrastructure

physical node

Infra-
structure

\:| .o D oo D
= = =0/ -/ 3
= - = =
& - = —

Infrastructure |« Infrastructure (4

If the Infrastructure specification can be constructed so that it forms a Framework for
systems with the same Infrastructure, but with varying Application part, then thisis
done. The application specification is changed accordingly. Theideaisthat if a system
can be made as an instance of a Framework, with much of the general properties of the
Framework isolated in the Infrastructure, then the Framework will have a potential for
being reused as a design.

In Object and Property Models - and the Languagesfor describing them weillustrate the
access control system where the Infrastructure and Platform issues have been
considered.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-47

- System Development Activities Tl Me

Design

For the access control system the fact that validation shall be performed by central com-
puter is an infrastructure issue, like the possibility of distribution of validation to the
access points, with additional protocols as an implication.

Table 4-2: Application, framework and architecture aspectsfor the
access control system

application , framework/ architecture
specification Infrastructure specification
specification

e gystemobject, || Validation * Plastic cards asthe
possibly con- shall be per- means for
taining formed by identification.
accesspoint central » Code for the soft-
andcen- compuiter. ware parts shall be
tralunit, with * Possibly distri- generated from SDL
contggt : bution of designsand based on
fspecmlcan on validation to existing runtime sys-
including sig- the access- tem for the central
nalslike Code, points, with computer and tai-
OK, NotOK, additional pro- lored run time
and MSCS asa tocolsasan systems for the code
specification implication In the access points.
of use cases.

Inaninitial development theinfrastructure aspect may not be obvious. Frameworkswill
often comeasaresult of a(successful) initial development, whichistobeused asabasis
for anew system. If e.g. distribution has been considered and isolated in an infrastruc-
ture part, the next system with the same infrastructure but with a different application
part can reuse this framework.

Design

Design This activity produces design object models primarily in SDL. Some parts of the design
object have to do with the required properties (Application design), another part of the design
modelsin - has to do with Architecture specific issues (including non-functional propertiesin con-
DL trast to the functional properties of application design), and athird part combines these

two into aFramework for instantiation of specific systems with the sameinfrastructure.

Design isacreative process. One thing is that the system design model will bein SDL,
while analysis models may be in UML. Another thing is that design may require a
restructuring, and will certainly add details and precision.

TIMe contains guidelineson how to transform UML modelsinto SDL models, and these
are more or less automatic. It isa point, however, that they are not quite automatic - if
they were there would be no need for the UML models (or for the SDL models). The

4-48 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

System Development Activities
Design

interesting transformation isto take the system requirements, identify the system objects
and assign attributes and behaviour to these object so that required properties are
fulfilled.

Specifications contain the specification parts of Application, Framework and Architec-
ture models. These are related to the design parts, asindicated in Figure 4-33 (p.4-49).

Figure 4-33: Specification and design related

Open figure
Application Specification part of models
models
Application Framework
specification modds

Architecture
models

Framework
specification

Architecture
spec

Application
design

Framework
design

Architecture
design

Design part of models

The main design language is SDL, but in cases where the system will be a combination
of SDL components and components created e.g. from an UML model, or using an inter-
face construction tool, the main design may bein UML.

Thereis some help to get in this main part of design activity. As mentioned above, the
system analysis produces specifications on three levels, and the system design follows
these specification levels:

» Application Design: where the real functionality is designed (p.4-49)
* Framework Design: from Infrastructure to Framework (p.4-59)
» Architecture Design: choice of implementation platform (p.4-58).

Application Design: where the real functionality is designed
Application Design produces context and content designs (in terms of structure and
behaviour) for the system type and/or for types being used in the system:

TIMeat aglance 4-49

System Development Activities Tl Me

Design

- Application context, that is a context model for the type, i.e. adiagram with the type
asasingle entity. It specifies the environment, the interfaces and the knowledge of
the type as well as external typeswhich are used as components. It also specifiesthe
context properties, i.e. services, and describes all objects in the environment.

- Application structure applies to types that consist of object aggregates, defining the
content as a structure of components.

- Application behaviour appliesto typesthat have a behaviour of their own, e.g. SDL
processes.

The first purpose of an application design model isto describe the system behaviour at
an abstraction level, where it can be understood and analyzed independently of a partic-
ular implementation. Thisis done in terms of both an object and a property model.

The second purposeisto beafirm foundation for designing an optimum implementation
satisfying both the functional and non-functional requirements.

Application design starts from the application context and the required properties. New
objects may be introduced during design, and these are also subject to the context/con-
tent distinction.

The application content may introduce new component types. In general the component
types and application types are designed in the same way:

e context design;
» content design: thisis either behaviour design or content design.
From As mentioned above, some domain objects are candidates for design objects. In Figure

domain 4-34 (p.4-50) it isindicated that AccessPoint may become a block typein the SDL

objectsto Jag gn.
design
objects Example

Domain object
model

Access Point

| block type

object; AccessPoint

Figure 4-34: From domain objectsto design objects

Another source of design objects comes from mirroring the entities in the environment
of the system. Considering the system specific aspects or propertieswill either add new
classesto the set of classes from the domain object model, it will add system specific

propertiesto domain object model classes, or it will make new subclassesto the domain
model classes. Thismay give the application specific objectstwo aspects. domain given

4-50 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

Subsystems
or not, and
when

Inspiration
fromthe
environ-
ment

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

System Development Activities
Design

and system given. The pure domain model classes can be used in all systemsin the
domain, while the system specific (sub)classes can only be used in systems with prop-
erties specific for thisfamily of systems.

» “Isthis not making things compli- lot to make a class generally usable.

cated? Wewant all classes we make
to be general enough to be used in
other systems anyway, so why not
just get started and make some
classes!”

Says TIMe: “It isacommon misun-
derstanding that all classes are
equally (or apriori) reusable, while
the fact is that many classes defined
for the purpose of a system are
defined within that context and will

The TIMe recommendation is there-
fore that objects (and their classes)
are mainly used for the purpose of
structuring systems, and that classes
in the first place should be defined
with this purpose in mind. So, when
making a domain object model,
include only the obvious general
objects and the obvious genera
properties - it is no mistake if the
domain model starts out being
small”.

only work in that context. It takesa

In some casesit isobviousthat the system shall be decomposed into subsystems, or that
objects in the system have a content structure. In that case thisis directly supported by
the SDL block concept. An SDL system simply consists of a number of blocks con-
nected by communication paths, so-called channels, and the blocks may in turn either
contain a new substructure of blocks or sets of processes.

TIMe establishes rules for good subsystem design that are readily supported by SDL .
Subsystems may either come as reflecting an inherent structure of the system, ase.g. the
division into central unit and a number of access points, or they may come from a pure
functional decomposition.

TIMe advocates to start the subsystem decomposition from an inherent structure and
then introduce new subsystemsif it turnsout that required properties cannot be obtained
by assigning behaviour to already identified subsystems.

“Finding” the content objects may in some cases appear as “magic” and may require
some experience from good design for smilar systems. However, once the environment
iIswell defined, the task issimpler. With a dight adaptation of an old saying: Tell me
who isin your environment and | will tell you who you are (i.e. what your content is).

TIMeat aglance 4-51

System Development Activities Tl Me

Design

In addition to guidelines like this, the complete TIMe contains rules for good designin
SDL (e.g. when to use concurrent processes, purpose of block substructuring, redesign-
ing by generalisation, etc.).
Try thissequence of activitiesto ensure that all roles supposed to be played by the
system are provided by some objects in the system:

» Mirror the environment behaviour: 1dentify the objects in the environment, and describe the
corresponding types with association roles. For each association role directly interacting with an envi-
ronment object through a static one-to-one connection, assign an actor object in the system.

« Define the corresponding object types and their association roles.

« If possible, assign the association roles remaining to be bound to objects already defined, otherwise intro-
duce new objects.

¢ Introduce switched communication where n-to-m communication is needed.

* Continue until all roles have been bound to actors. This may be an iterative process by
which new actor objects are found.

» Duringthese activities, make M SCsdetailing theinternal interactions (between
the newly design objects) and check that the structure will give effective behav-
iour definitions.

4-52 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

Tl M e System Development Activities

Design

Fromthesystem analysisweget shall both handle the panel, the
the specification that the system door and communication with
shall be structured into a set of the CentralUnit (that is three
AccessPoints and a CentralUnit. processes), so we decide to have

We also know that AccessPoint AccessPoint as blocks, because
blocks may contain processes.

Figure 4-35: Application design in SDL

Open figure
SYSTEM AccessControl 1(1)

[* Signal definitions for AccessPoint communication */
SIGNAL
eject-card, lock, unlock * AccessPoint TO ENV */
input-card, isOpen, isClosed /* ENV TO AccessPoint*/
display, [* Display TO ENV */
keys; * ENV TO Keyboard */
SIGNAL Code(integer,integer); /* AccessPoint TO CentralUnit */
SIGNAL OK,NOK,ERR ; I* CentralUnit TO AccessPoint */

SIGNALLIST validity = OK, NOK, ERR ;
SIGNALLIST outp = EjectCard, display;
SIGNALLIST inp = InputCard, keys ;

AccessPoint

CE

. [(validity)] [Code]
— .
e AP(100): Cl— <aq4—— | CentralUnit

(outp)] [(inp)] AccgssPoint C

[isOpen,isClosed]

[lock,unlock]

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-53

Object
(behav-

4-54

System Development Activities
Design

TIMe

If system content decomposition in terms of subsystemsis not obvious, TIMe advocates
(~ todesign the object typesfirst. That isidentify the attributes and behaviour that each
iour) design - ghject shall have in order to fulfill the required properties.

At this point Sesam Sesam had con-
sulted some UML experts. They had a-
ready made a domain object model (in
UML) and used thisasabasisfor afirst
system object model. They werenow in
the position to do what really isthe core
of the development: to specify the be-
haviour of the objects so that they to-
gether provide the required properties.
They had parts of the propertiesdefined
by use cases and now they wanted to
specify the behaviour of the objects.

An obvious choice was to generate
skeleton code from the UML object
model and then provide the functional -
ity in C++ or Java, but problems were
reported to the TIMe consultant:

» “Some of these objects have intri-
cate behaviour and alot of
Interaction, so we wanted to specify

them as state machines where the
transitions are triggered by incom-
ing signals’

“1 guess you have used the State-
charts notation in UML” - saysthe
TIMe consultant.

“Yes, but we also wanted code gen-
eration from the behaviour
specification, and that is not sup-
ported - the object model and the
behaviour model are not integrated”.

“Ah” - saysthe TIMe consultant -
“then you are really looking for
SDL : most of the UML object model
can be represented in SDL (except
general associations, but aggrega-
tion and inheritance are supported).
Expressing the behaviour specified
in terms of Extended Finite State
Machinesis an integrated part of
SDL.”

For design in SDL, object behaviour design amounts to identifying the required pro-

cesses and specifying these by means of variables, procedures and behaviour in terms of
states and transitions. The context design of the class|eadsto gate definitionsin the cor-
responding SDL type, whilethe property models areinput to the combined behaviour of

the process.

In the object design, property models can be made more detailed and precise.

TIMe contains guidelines for how to come from a set of property modelsin terms of
M SC to the corresponding processtypein SDL. A short description of these guidelines
are found in From M SC Property Modelsto SDL Object Models.

Inthefirst round it isrecommended to ignore the interface specific behaviour. We know
that AccessPoint will have a part that handles the user without considering how the card
code and the PIN are entered viathe panel (UserServer in Figure 4-30 "Introducing Pan-
elServer and DoorServer as part of AccessPoint” (p.4-45)). From the M SCs between

TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

System Development Activities

Design

system objects we know that this part of AccessPoint shall also handle the communica-
tion with the CentralUnit, so we rename “UserServer” to the more neutral “ Controller”,
see Figure 4-36 (p.4-55).

Figure 4-36: Behaviour of Controller accordingto User Accepted & User
Not Accepted

Open figure

PROCESS TYPE Controller

1(1)

|
DCL cur_panel PId ; /* Current panel whose Code will be validated */
DCL cid, PIN integer ; /* Temporary variables for the data attributes of '‘Code’ */

unlockDoor
Idle Validation
|
Code(cid,PIN) OK NOK
/* from /* from
[* from Panel */ Central */ Central */

NOK
TO cur_panel

cur_panel := '(I?g '
cur_pane cur_pane
TO
_ L unlockDoor
Code(cid,PIN EntralUnit

Validation

i

-

¢ [Code]
P D
[(validity)]

Access points shall handle the use cas-
eswhere a user enters a code and gets
either Ok or NotOK. The Controller
object as part of AccessPoint shall pro-
videtherequired properties. Thisleads
to the processtype above. Itismadein-
dependently of how Code is obtained
from the user and how OK and NotOK
are presented (interface specific). It

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

[opened,closed]

[open,close]

Y [(validity)]
[Code]

has been decided that the validation
shall be done by the central unit. If we
did not want to take thisdecision at this
point, we could have made atransition
that ssmply (informally) provided the
validation, and then later changed this
to a communication with the central
unit.

TIMe at aglance

4 -55

Designing

non-
domain
given

objects

System Development Activities

Design

TIMe

This processtype fitsinto a design of the AccessControl object asablock (defined by a
block type) asin Figure 4-37 (p.4-56).

Open figure

Figure 4-37: Block type AccessPoint with processes

BLOCK TYPE AccessPoint 1(1)

SIGNAL opened,closed ; /* Door -> Controller */5
SIGNAL open, close ; /* Controller -> Door */

* signallists (inp), (out) and (validity) are defined in
enclosing block, as is the signal 'Code’ */

Controller

o))] [unlock, | [unlock,
e CE lock] IockJ

- > > > - >

[(utp)] |[(outp)] [isOpen, |[isOpen,
b1 [(validity)] isClosed ISC|OS€d]

[code] [opened, [open,

- closed] D |close] [(validity)]
Controller [(validity)] Cu [COdE‘]>< ¢ [Cod:]

Should all required properties lead to attributes and behaviour of the domain given

objects? The answer is no!

The Sesam Sesam group had been suc-
cessful in starting out with domain ob-
jectsin order to get at the application
objects, but ...

* “Thisisal very nice, but how dowe
introduce the new system aspects?’

» SaysTIMe: “As mentioned before
therearemainly twowaysout: either
introduce new system objects, or
introduce speciaisations of the

domain object classes. If you have
an UML domain object model and
generate code from this, your extra
classesor your specialisationscan be
done either in UML or directly in
C++ or Java. If you have turned to
SDL, then you have part of your
domain object model represented as
typesin SDL, and you make new
types or subtypes”

The main purpose of the distinction between domain and system given aspectsis that

special services should not be associated with domain objects, asthese will probably not
be of interest to other systemsin the domain. Besides working as inspirations for appli-
cation objects, domain object classesare candidatesfor re-usein different systemsin the

same domain.

Which objects should then provide aproperty that is not obviously covered by adomain

given object?
The answer is:
 either a separate object,

TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Evolution
of domain
models,
including
design
issues

System Development Activities
Design

e or an object of asubclass of the corresponding domain object class.

Thelast aternative requiresthat the domain object classisrepresented alsointhe design
language, and it is recommended to document that the subclass is system given and not
domain given.

“What about the introduction of the objects or specialisations of thedomain
interface specific aspects? Does that object classes?’
follow the same pattern: either specia

If it isan interface property, and if the property has to do with the actual appearance or
implementation of the interface, then it should be provided by a separate interface
object, likethe Panel processin Figure 4-37 (p.4-56). Low-level interface (protocols) or
the window part of auser interface should be isolated in special objects, whileinterface
given behaviour at the “ application” level can be provided by specialisations of domain
classes. The main thing is to isolate the objects that may change with change of under-
lying technology. The answer can also be given by how the interface is to be provided
(existing protocol implementations, user interface toolkits).

If it isasystem given property and if it requires e.g. a separate computation or interac-
tion with other non-domain given objects, then it should be provided by a separate
system object. An example of thisisthe operator handling object. It should be defined
as a separate object, but its class may e.g. be a specialization of a class that exists, e.g.
AccessPoint.

It may be tempting to take each use case and make akind of “control” object that takes
care of this use case - then it will at least be easy to trace it when considering new
requirements related to the use case. Most often, however, theinstancesinthe MSC dia-
grams for the use cases only represent Roles or partial behaviour of somerole. The
challengein design is rather to distribute the required behaviour to objects, and objects
will often play several roles.

The distinction between domain, system and interface given aspects may change over
time. The domain may be narrowed to include some of the other aspects, and the classes
of the domain models may include more and more of the properties that appear to be
common for many systems.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-57

Locally
defined
types or
typesin
packages?

System Development Activities Tl Me

Design

=

I Domain object Domain object
. .
[Access Point | Model \‘ / model
system P
4P Access . ’ .’" g DlOCK type
_ | Point g AccessPoint

Example g gt block type
g AccessPoint

Figure 4-38: Evolution of domain object model

Where shall the application given design types be defined? A priori they are defined as
part of a system model.

Types may be defined in SDL packages and used by the system model. Such packages
may either be system specific or more general.

Typesin the latter kind of package will have to be more general than in thefirst kind of
package, asthey shall be usable in more than one system. As a starting point, design
types are defined as part of the system and shall at least fulfil their “mission” there. In
addition, it is recommended that types are turned into general types that can be used in
other systems.

TIMe provides guidelines on how to achieve generality:

» by generalization, that is by defining supertypes with virtual properties for redefini-
tion in subtypes, and

* by parameterization, that istypeswith context parameters, so that types can be fully
defined without being in their actual contexts.

Even when defining a general type it is advocated to specify possible requirements on
the contextsin which the type can be used. These come from the context modelsand are
readily expressed by gate constraintsin SDL types.

Architecture Design: choice of implementation platform

Architecture Design designs an implementation architecture that will behave as defined
in the application object model and that satisfies the non-functional properties, taking
the actual platform in terms of hardware and support software into account. It will al'so
define a process for (automatic) generation of application implementation code and for
configuration and building of system instances.

The purpose of architecture design isto answer how the system is going to be realised.
Thisis expressed using Architecture descriptions that show:

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

System Development Activities
Design

» theoverall architecture of hardware and software;
* how Frameworks and Applications are mapped to the Architecture.

Whilethe Application and the Framework hasfocus on functional properties and behav-
iour, the Architecture has focus on non-functional properties and physical structures.
The purposeisto give aunified overview over the implementation and to document the
major implementation design decisions.

Architecture design determinescritical architectural issuessuch asphysical distribution,
global addressing schemes and fault handling. Some of these may subsequently be
reflected in the Framework model in order to describe the complete system behaviour.

The Architecture consists of two main parts.

» The Platform, which consists of the hardware with support software (such as the
operating system, a DBM S and middleware) and the Infrastructure.

» The Application implementation.

Associated with the architecture it is recommended to define a process for (automatic)
generation of code and for configuration and building of system instances.

Architecture design is only performed when the implementation mapping is undefined
or needs to be changed. This occurs during the initial development of a system family
and during maintenance when changes in the platform are made.

During normal application evolution, the Architecture will stay the same, and system
evolution can take place mainly at the Application level.

Hardware and software architectures are defined to alevel of detail from which imple-
mentation iswell defined. The architecture shall separate between support mechanisms,
such as an operating systems, and applications.

Inaninitial development, Architecture design will come before Framework/Infrastruc-
ture design. Architecture design involves the choice of implementation platform, what
should be done in software and what in hardware, etc. The design may have to be
adjusted according to thischoice. SDL toolsmay e.g. impose restrictionsin order to sup-
port code generation.

TIMe has a 5-step procedure for making architecture design. Thisis not applied to the
examplein this overview and is therefore not covered here.

Framework Design: from I nfrastructure to Framework

Framework Design defines an abstract and generic framework object model and a
method for instantiating the Framework with Applications. In this activity the imple-
mentation dependent functionality is taken into account, e.g. distribution support, error
handling and configuration. It develops a layered approach which separates the Appli-
cation and the implementation dependent Infrastructure. The infrastructure part will be
nearly complete, and the rules for mapping Applications to the Framework will be well
defined.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-59

4 -60

System Development Activities Tl Me

Design

Making infrastructure

The infrastructure part of a system contains additional behaviour needed to fully under-
stand what the system does (i.e. the complete system behaviour). Here we find objects
and parts of objects that support distribution, system administration and other facilities
not directly related to user services. Whenever practical the Application and the Infra-
structure should be put together in a Framework that serves to simplify the definition of
new systems. Thisimplies that the objects that are mainly application specific objects
will get some infrastructure specific elementsin order to work on the given
Infrastructure.

When taking infrastructure aspects
into consideration, the system as application specific
designed froman applicationpointof | =~~~ |}—
view may be redesigned. Restructur- . 1 ..
. . infrastructure specific
ing does not mean that everything has

to be redefined. A mgjority of the
processes from the first application ~ Figure4-39: Application and infrastructure
design may be left unchanged. As specific parts of systemsinto a framework
they are defined as stand alone types,

it isasimple matter to put them into anew structural context together with some new
processes.

\

In general it will be an advantage if the application design has been done by means of
typesthat are asgeneral aspossible. General types can be used in more than one context,
and when redesigning, the context of the “application” types may change dlightly.

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

Figure 4-40: Redesigned Access Control

system V3

Open figure

System Development Activities
Design

SYSTEM AccessControl

Cluster

Entry

CE Cluster
GE

GC

clusters(100):

A
C
4

CentralUnit

OoP

In the access control
system the channels
between the Access-
Points and the Cen-
traUnit are
candidates for distri-
bution. Wetherefore
decideto let these
channels be the ones
that cover distances.

Therewill beat |east
one central comput-
er and from zero up
to 100 local comput-
ers. In this architec-
ture we shall
implement the Ac-
cessPoint and Cen-
tralUnit processesin
software running on

the computers. We structure the system accordingly: a block set
Cluster for the part of the application running on the local comput-
ers, and the CentralUnit for the part running on the central comput-

er

Note that this distributed architecture is different in structure from
the application design, and that some communi cation protocol s will
be needed to support the communication between the local and cen-

tral hardware.

With the redesigned system, the application types are possibly modified in order to fit
into the new structure. If this has been done, a division of the system into application
and infrastructure parts has been obtained, and for the next systems (with the sameinfra-

structure) it isamatter of exchanging the application types with either improved

versions or new application types with e.g. new functionality.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

TIMe at aglance

4-61

System Development Activities Tl Me

Design

Figure 4-41: Cluster with LocalUnits and |n this solution the vali-
ClusterUnits dation database will be
distributed. There will

Open figure be a copy of the central
Validation process(and
BLOCK TYPE Cluster its database) in each
cluster. Thismeansthat
AccessPoint|| || Protocol the Central Unit must
handle updatesin adis-
tributed database. This
introduces a new prob-
lemto solvein thefunc-
tional design, but the

LocalUnit ClusterUnit

localunits Access Points and the
€ (10):LocalUnit Validation processesin
PR each cluster may (hope-
fully) work just as be-
GE 4 fore.
A 4
appli- infra-
PR cation struc-
clustercontrol: specif- ture
e ClusterUnit ic parts | specif-
CE ic parts
A access | proto-
jr point col
GC valida- | cluster
tion unit
local
unit

4-62 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

System Development Activities
Design

Figure 4-42: AccessPoint used in both . .
L ocalUnit and Cluster Unit We see that AccessPoint will be

used both in the LocalUnits as

well asin the ClusterUnits. Those

Open figure \ - . -
in the ClusterUnits will have di-

BLOCKTYPE LocalUnit rect, local accessto the Validation
process, whereas those in the Lo-
calUnits must communicate via

o lea] Lt |« o | PL:Protocol physical links and protocols (rep-
AccessPoint |~ resented by the block P1 of type
\ Protocol). The signalsto and from
the AccessPoint blockswill be the
4; same.
d PR
PR
'y applica- infrastruc-
BLOCKTYPE ClusterUI’lit tion specif- ture specif-
ic parts ic parts
L2: v
e | AccessPoint access protocol
P2:Protocol point)
4 cluster unit
validation
d / local unit
Validation | «—»{ P3:Protocol
A
v
CE

Making frameworks

Having identified an infrastructure that seemsto be common for many systems with
almost the same application properties, TIMe advocates the re-designing of the system
into a framework. TIMe gives guidelines on how frameworks can be defined in SDL.
The following is a short introduction to how it is done.

As mentioned above, ausua definition of aframework isthe following: “ In object ori-
ented systems, a set of classes that embodies an abstract design for solutionsto a
number of related problems.”

TIMe putsalittle more into frameworksthan the definition above, and one reason isthat
SDL can specify the static structure of systems and not just a set of types.

A framework is aclass/family of systems, with predefined structure so that a specific
system only hasto provide the specific “ contents’ of part of this structure. Frameworks
often come about because an abstract (application specific) system description hasto be
supplemented by a large infrastructure part in order to be executable on a given plat-
form. Instead of making the infrastructure part again for the next system with the same
infrastructure on the same platform, aframework that embodies both the application and
the infrastructure part is defined. In aframework the infrastructure is stable, while the
application part may vary from system to system.

TIMeat aglance 4-63

4-64

System Development Activities Tl Me

Design

In the infrastructure design (see Making infrastructure (p.4-60)) the infrastructure part
consists of the restructuring of the system into cluster units and local unit and the intro-
duction of the protocol units. The application specific part is represented by the block
type AccessPoint.

Figure 4-43: Access Control System type as a framewor k

Open figure
SYSTEM TYPE AccessControl
Vi RTUAI._ Cluster
AccessPoint
clusters(100):
CE Cluster Ccb
< > GE GD] < >
GC
i .
OP
CentralUnit < >

The system description of Figure 4-40 (p.4-61) isturned into a framework simply by
defining it as a system type and defining the application specific types as virtual types
(inthis case AccessPoint), see Figure 4-43 (p.4-64).

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

Tl M e System Development Activities
Design

The Cluster block isalmost as before: it uses the virtual block type AccessPoint (but it
does not contain its definition), and it embodies the infrastructure parts needed for dis-
tribution (ClusterUnit, LocalUnit and Protocol), see Figure 4-44 (p.4-65).

Figure 4-44: Block type Cluster as part of framework for Access Control

Systems
Open figure
BLOCK TYPE Cluster BLOCK TYPE LocalUnit
Protocol
o Lep]t |« a | PL:Protocol
AccessPoint [T+
LocalUnit ClusterUnit
A
. A 4
localunits d
€ (10):LocalUnit d PR
PR PR
A
1 BLOCK TYPE ClusterUnit
GD
GE Y | v
€ 7| AccessPoint
PR P2:Protocol
clustercontrol: A
e ClusterUnit d d
CE
A . .
wt Validation | «—»| P3:Protocol
GC 7y
v

An actual system based upon aframework definition is described by defining a subtype
of theframework system type, and redefining the virtual, application specific types, see
Figure 4-45 (p.4-65). Therulesfor redefinitions of virtual typesin SDL ensuresthat the
redefined AccessPoint will have the same interface as specified in the virtual definition
(asaconstraint) and thereby assumed by the rest of the system type.

Figure 4-45: An actual system based upon a
framework

Open figure

SYSTEM TY PE actual AccessCon-
trol INHERITS AccessControl

REDEFINED BLOCK TYPE AccessPoint

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-65

System Development Activities Tl Me

I mplementation

I mplementation

Concrete
system

What to do

I mplementations are detailed and precise descriptions of the hardware and the software
that a concrete system is made of. They define the physical construction of systemsina
family. The software part will be expressed in programming languages such as Java,
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagramsand VHDL.
Software playsadual role. Firstly, asadescription to be read and understood outside the
system, and secondly as an exact prescription of behaviour to be interpreted inside the
system.

Concrete systems consist of:

» The Application and the Framework software. State-of-the-art tools alow this soft-
ware to be automatically derived.

» Specia Application and Framework hardware. Thiswill be special hardware
designed to perform part of the Application or the Framework.

* The Platform, which consists of:

- the support software which normally is a layered structure containing operating
systems, middleware for distribution support, SDL runtime systems, DBMS and
interface support;

- the genera hardware which normally is an network of computers.

For every new system development, the platform is an important design issue, as it
determinesimportant propertiessuch ascost, reliability and flexibility. It also influences
the way that Applications and Frameworks are implemented. The code which is gener-
ated for the Application and the Framework must be adapted somehow to the Platform.
Here the Vendors of code generators use two different strategies. One isto adapt the
code generator so the generated codefits the platform. Another isto adapt the generated
code to fit different platforms by means of interface modules and/or macros.

Once the platform and the code generation strategy is defined, it is possible to rely on
automatic code generation for Application and Framework evolution for those parts
where SDL is used.

| nstantiation

The main thing in this activity isto configure and to build system instances. Configura-
tion can be applied both to the Application, the Framework, the Architecture, and the
Implementation levels. Ideally we should perform configuration at the level where it
belongs: functionality at the Application and/or Framework levels, and implementation
at the Architecture and/or Implementation levels.

It is possible to perform some configuration at the Application and Framework levels
using SDL, but due to limitations in the language, this is restricted.

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

Tl M e System Development Activities

Instantiation

The common practice in most companies today is therefore to do configuration on the
implementation level using configuration filesand toolslike Make. (An aternativeisto
use special configuration languages.)

We recommend that a method for configuration and building of system instancesis
defined as part of the Architecture design work.

D]

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-67

- Object and Property Models - and the L anguages for describ- Tl Me

Object Modelling

Object and Property Models
- and the Languages for describing them
(]

Systemsin the scope of TIMe are characterised by consisting of concurrently executing
objects that communicate by sending signals and whose behaviour is best described by
states and transitions (reactive systems).

These systems tend to become large and complex - therefore it is not sufficient to
describe the objects - the system also has to be structured in some way. Important prop-
ertiesare often described by use cases and by interactions between objects of the system.

UML [147], OMT [165] and many other methods use object diagrams and informal
sketches in the specification and design of structure and a Statecharts-like notation for
the specification of behaviour. TIMe uses one language for both: SDL.

SDL isalanguage recommended by 1TU [102] for specifying structure and behaviour
of systems that are reactive, concurrent, real-time, distributed and heterogeneous (not
just telecommunication systems).

MSC is a notation recommended by ITU [110] for describing interaction scenarios.

Object Modelling

TIMe recognizes that UML and SDL have dlightly different approaches to object mod-
eling, that these differences in some cases are beneficial (UML provides e.g. concepts
for associations, while SDL does not) and that they in other cases may cause problems.
Instead of aclear cut between object modeling in UML and SDL, TIMe definesits
underlying approach to object orientation and provides guidelines on how to use both
UML and SDL to support this.

This section will give an short introduction to the elements of this underlying approach
to object orientation, and then introduce both UML and SDL, describing how they
match this approach.

What is The approach followed in this method is that an object model is regarded as a physical

object model, simulating the behaviour of either areal or imaginary part of theworld. Themain

modelling property of physical modeling isthat it isbased upon aconception and understanding of
the application domain in terms of phenomena and concepts, and that physical models
will have elements which directly reflect these phenomena and concepts. The physical
model will consist of

- objects, that represent the phenomena, and
- classesthat represent concepts.

Objects are characterised by variable attributes (data attributes), procedures (potential
behaviour patterns) and behaviour. Objectsin this approach may execute their behav-
iour concurrently with other objects. This kind of object is sometimes called “active
objects’ in contrast to “passive (data) objects’.

4 -68 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| M e Object and Property Models - and the L anguages for describ- -

Object Modelling

Associated with objects and classes are a number of structure and abstraction
mechanisms:

 |dentification of objects and the classification of these into classes.
« Part/whole aggregation, that is objects as part of other objects.

» Relation composition, that isan object hasrelationsto other objectsinstead of having
them as parts.

» Specialization of classes. Classification relates all objects with the same set of prop-
ertiesinto aclass. Specialization isamechanism for the structuring of sets of classes
with similar propertiesinto general and specialized classes.

» Localization of definitions: Some objects and classes are only meaningful within the
context of a specific object or class.

class In addition, object oriented languages have support for some kind of library concept,
library enabling sets of related classes to be used in many different applications.
Domain In order to bridge the gap . .
and design between domain object mod- Domain Object Model
object eling and design object Object Model
models modeling, TIMe provides
_gwc_lelln%for object model- Design Object Model
ing in general, and

specialized guidelines for
analysis and design.

UML for Object Modelling

TIMe uses UML for describing object modelsin case the formality of SDL is not
required (or desired). The full TIMe book contains atutorial on UML; the following is
just an overview, covering the most important elements.

classes UML object modelsconsist of aset of classes. A classisdefined by aclassdiagramwith
definition of attributes and operations.

attributes In Figure 4-46 (p.4-69) three classes are defined with attributes, and no operations.

Figure 4-46: Attribute specification

Open figure
User Access Zone Access Point
Name: string Name: string Name: string
Number: Integer Level: Integer Number: Integer
Level: Integer Access. key type

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-69

Relations
and com-
munication
connections

specializa-
tion

Object and Property Models - and the Languages for describ- Tl Me
Object Modelling

Classes may berelated, as e.g. in the domain object model in Figure 4-47 "The access
control domain™ (p.4-70). AccessPoint and User are connected in order to specify that
objects of these classes communicate.

The endpoints of the relations may have cardinalities.

Classesmay inherit propertiesfrom asuperclass, asin Figure 4-48 (p.4-70), and thereby
define more specialized classes.

Figure 4-47. The access control domain

Open figure
*

AccessZone

1 | 4

W bounded by may enter

m ter

1. j th%/ugﬂ N1
AccessPoint User

Figure 4-48: Possible classification of Access Points according to logging and blocking

part/whole
-real
aggrega-
tion

functionality

Open figure

LoggingAccessPoint
AccessPoint %

L BlockingAccessPoint

Although UML supports multiple inheritance, TIMe advocates the use of single inher-
itance. One reason is that thisis by far the best understood concept - another reason is
that SDL only supports single inheritance.

The fact that an object contains other objectsisin UML specified by an aggregation
association.

In order to really specify that the objects are part of the containing object and that rela-
tionsto these part objects are only meaningful when contained in this object, the SOON
notation [24] can be used, see Figure 4-49 (p.4-71). Itis here specified that each Access-
Point consists of three objects (of classes Panel, Door and Controller) and that the

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| M e Object and Property Models - and the L anguages for describ- -

Object Modelling

environment communicates with some of these part objects. In UML the User in the
environment would have associations to the class Panel in general, while what we want
to expressisthat they only have associations with Panels as part of AccessPoints.

Figure 4-49: Environment entitiesinteract with partsof the system

AccessPoint

Open figure
[Card code]
<display messages>|p.
(User)iag play 9ES7IP:(Panel

<key strokes>

—

) S
C: [Code
. P
(Con- | 1ok Nok]
troller)

Central
Unit

The corresponding can be expressed in UML using the Composite relation, preferably
using the nested graphical alternative, see Figure 4-50 (p.4-71).

Figure 4-50: Composite aggregation in UML

Open figure

User

AccessPoint
1 1
Panel .
APC: Central-
1 Unit
Door Controller

Localiza- Classes defined locally to classesis not supported by UML. If thisisimportant to
tion express, then it may either be expressinformally or it may be specified in SDL.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

TIMeat aglance 4-71

- Object and Property Models - and the L anguages for describ- Tl Me

Object Modelling

SDL for Structure and Object Behaviour

system An SDL system consist of anumber of blocks, connected by channels. Possible commu-
nication by means of signalsisindicated on the channels.

Figure 4-51: Application design in SDL

Open figure

system AccessControl 1(2)

* Signal definitions for AccessPoint communication */

SIGNAL

eject-card, lock, unlock * AccessPoint TO ENV */
input-card, isOpen, isClosed /* ENV TO AccessPoint*/
display, /* Display TO ENV */

keys; I* ENV TO Keyboard */
SIGNAL Code(integer,integer); /* AccessPoint TO CentralUnit */
SIGNAL OK,NOK,ERR ; [* CentralUnit TO AccessPoint */

SIGNALLIST validity = OK, NOK, ERR ;
SIGNALLIST outp = EjectCard, display;
SIGNALLIST inp = InputCard, keys ;

th/ggk AccessPoint
CE
% AP(100): Cw CentralUnit
channel ((outp)] [(inp)] AccgssPoint c
[isOpen,isClosed]
[lock,unlock]
block set

according to block type block

Thesystem diagramin Figure 4-35 (p.4-53) definesasystem with one block Central Unit
and a set of 100 blocks of block type AccessPoint.

block A block may either be further structured into blocks, or it may contain anumber of pro-
cesses. A block type defines a category of blocks with the same properties. The block
type diagram in Figure 4-52 (p.4-73) defines the AccessPoint referenced in the system
diagram.

Each AccessPoint block will consist of three processes. Panel, Door and apc (access
point controller) of process type Controller. The fact that the process type controller is
defined to be virtual implies that it may be redefined in subtypes of AccessPoint.

The e and C on the outside of the frame are gates, that is connection points for channels
- they are used in the system diagram above.

4-72 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| M e Object and Property Models - and the L anguages for describ- -

Object Modelling

“class’ Theblock typein SDL correspondsto aclassin UML. Theinstances of ablock type are
objects that contain other objects (blocks or processes).

process type signal route single process (set)

Figure 4-52: Block type AccessPoint with virtual Controller processtype

Open figure

block type AccessPoint 1(1)

SIGNAL opened,closed ; /* Door ->Controller */I—>>
SIGNAL open, close ; /* Controller - Door */

/* signallists (inp), (out) and (validity) defined in

enclosing block. This holds also for signal '‘Code’ */

virtual
‘ Controller
. [unlock,
o]| o [(NP)] —— Jock]
- > » Panel)
(outp)]l |[(outp)] [isOpen,
[(validity)] isClosed]
P1
[code] [openec
apc: D _ closed] [(validity)]
' < —>
Controller u [(Va'ldlty)] C [Code]
process set according to type Controller gate

communi- The processes of each AccessPoint block are connected by signal routes, and the signals
cation on these indicate the possible communication between the processes. The signals used
connections - hetyween the processes of a block can be defined locally to the block.

process: Processes execute concurrently, communicate by means of signal exchange (or remote

objectswith procedure calls), and have the behaviour represented by an Extended Finite State

behaviour N achine. The extensions are that processes may have variables and actions as part of
transitions.

The process type Controller in Figure 4-52 (p.4-73) is defined by the process type dia-
gramin Figure4-54 (p.4-75). It definesthe behaviour of Controller process by means of
states and transitions.

attributes ~ The process type also defines the variabl e attributes of Controller processes. cur_panel
of type PId (denoting a Panel process instance) and two integer attributes cid and PIN.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-73

- Object and Property Models - and the L anguages for describ- Tl Me

Object Modelling

_ procedure procedure
variables state Input output call reference

FigureA-53: Virtual processtype Controller

Open figure

virtpfal process type Controller 1(1)
1
dcl cur_panel PId ; /* current pariel whose Code will be validated/*/
dcl cid, PIN integer ; /* temporary variables for the data attributes of ‘Code’ */

unlockDoor ’
Idle Validation

|
Code(cid,PIN) virtual OK virtual NOK
[* from /* from
* from Panel */; Central */ C‘entral */
OK NOK
cur_panel ;= Q to cur_panel
sender J to cur_pane‘ _p

Sl — 7

Code(cid,PINp— —| © unlockDoor
i Central

[Code] [opened closed] A [(validity)]
[Code]

[(vaI|d|ty)] [open close]

specializa- A type may be defined as a subtype of another type (the supertype), thereby inheriting
tion all the properties defined for the supertype and possibly redefining the virtuals of the
supertype.

The subtype hierarchy which isspecifiedin UML in Figure 4-48 (p.4-70) will in the cor-
responding SDL design be represented by two block types inheriting the block type
AccessPoint. In Figure 4-54 (p.4-75) thisisillustrated for BlockingA ccessPoint.

4-74 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| M e Object and Property Models - and the L anguages for describ- -

Object Modelling

additional signals
on inherited gate

Figure 4-54: Block type BlockingAccessPoint as a subtype of

AccessPoint
Open figure
block type BlockingA ccessPoint 1(1)

inherits AccessPoint
C

redefined <E_ _f;|_ >
Controller [Enable,
Disable]

The redefined process type Controller inherits the states and transitions of the virtual
Controller from AccessPoint, and it adds states and transitions, as shown in Figure 4-55
(p.4-75).

Figure 4-55: Redefined processtype with added states and
transitions

Open figure

redefined process type 1(1)
<<block type BlockingAccessPoint>> Controller
inherits <<block type AccessPoint>> Controller

added
state

BlockDoor

added

input for

Disable % Enable / * / save

al
other
BlockDoor Sig-
nals
(blocked) Idle

A [Disable,Enable]

U !
v

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-75

- Object and Property Models - and the L anguages for describ- Tl Me

Object Modelling

When the redefined Controller gets aDisable signal (in all states) it will enter the state
Blocked, whereit will only accept Enable, while al other signalswill be saved (for con-
Sideration in other states).

package: Inaddition to the structuring of systemsinto blocks of blocks or processes, SDL speci-

Itht? SOL fications can be organised in packages. A package is a collection of type definitions.
iorary . . .y .
concept In Figure 4-56 (p.4-76) the signal definitions for the access control domain have been

collected in a package, and in Figure 4-57 (p.4-77) they are used by a system diagram.

Figure 4-56: Package diagram SignalLib

Open figure
package diagram
package SignalLib signal definitions

/* Signal definitions for AccessPoint-communication */

signal
eject-card, lock, unlock * AccessPoint to ENV */
input-card, isOpen, isClosed /* ENV to AccessPoint*/
display, /* Display to ENV */
keys; /* ENV to Keyboard */
signal Code(integer,integer); /* AccessPoint to CentralUnit */
signal OK,NOK,ERR ; * CentralUnit to AccessPoint */

: : L _ signal list defini-
signallist validity = OK, NOK, ERR ‘4 tions

signallist outp = EjectCard, display;
signallist inp = InputCard, keys ;

[* Signal definitions for BlockingAccessPoint communication */ g

signal)) .
Disable, I* CentralUnitto BlockingAccessPoint */
Enable : I* CentralUnitto BlockingAccessPoint */

/* Signal definitions within Acces%‘*\ e~
signal opened,closed ; /* Door to Controller */ signal definitiong

signal open, close ; /* C8ntroller to Door ¥/

4-76 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| M e Object and Property Models - and the L anguages for describ-
Object Modelling

Figure 4-57. System using a package of type definition

Open figure
package reference clause
2k I
use SignalLib
system AccessControl 1(1)
AccessPoint
CE
< > [(validity)] [Code]
] € AP(100): C|—a——®—— CentralUnit
[outp)] [MP | AccessPoint c
d
[isOpen,isClosed]
[lock,unlock]

Guidelines on Object Modeling

Guidelines Domain Object Modelingisaspecial kind of Object Modeling. In addition to the general
for Domain - guidelines for Object Modeling found in TIMe, the following special guidelines apply:

Object
Modeling * Object classes with attributes, relations and connections

If attributes are not known, just introduce the class. Include any relation or commu-
nication link that may be important - in the design activity these will be refined and
detailed (or thrown away). Do not use too much time on signals or communication

links, unless they are stated in the Domain Statement.

Communication connections between classes indicate that there will be interaction
property models between instances of these. For each of the communi cation connec-
tions check if thisisimportant enough to call for interaction property models.

* Relations

Do not be afraid to use illustrative relations, but be aware that they may have to be
“implemented” during design, while constructive relations may be implemented

automatically through a data base part of the system.
o Attributes

If the type of an attribute is not known, simply introduce the attribute without any
type, or introduce the attribute type asaclass - thiswill then be defined during design.

» Aggregation

Useonly real aggregation when it isobviousthat thisisthe case. If in doubt, userela

tion aggregation, as this the most flexible.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMe at aglance

4-77

Object and Property Models - and the Languages for describ- Tl Me
Object Modelling

» Behaviour associated with the object model
Thiswill mostly bein terms of Interaction Models by use of MSC. If state informa-
tion isimportant for the behaviour of an object, sketch an SDL process graph
fragment for this part of the behaviour.

» Localisation (nesting)
Do not consider thisunlessit isquite obvious. In case SDL isused for domain object
modeling, it will produce a set of packages of type definitions. These will mostly be
independent of the actual context. If domain modeling goes so far asto define system
and block types, then apply the general rules of localization.

Guidelines Object modeling for Design isaspecial kind of object modeling. The general guidelines

for Design

Object
Modeling

classes

types

of Object Modeling applies, with the following additions:

» Object classes with attributes, relations and connections
Attributes will be defined by attribute types that are either reused or designed.
Associate signal lists with communication links.
Turn communication connections into signal routes or channels when designing in
SDL.

* Relations
Stick to constructive relationsif part of the product isto be implemented by a data-
base component; otherwise “implement” all relationsin SDL as data or signals.

o Attributes
Types of attributes must be defined, preferable as ADTSs.

» Aggregation
Usereal aggregation when it isobviousthat thisisthe case, and use the SDL kind of
aggregation.

» Behaviour associated with the object model

Thismay still bein terms of Interaction Models by use of MSC, but more SDL pro-
cess graph fragments should be devel oped during Design.

From UML Modelsto SDL Modds

SDL ismore formal than UML. That is the reason why SDL is chosen for specification
and design, and the reason for using UML for analysis and sketches.

SDL has more specialised concepts, so in a mapping from UML to SDL anumber of
decisions must be taken. Most UML classes of objectswill map to process types, but in
UML we may define attribute types as classes, while attributes in SDL are mapped to
variables of datatypes. Aggregated objectsin UML may either map to blocks (contain-
ing other blocks or processes) or to processes (containing services).

TIMe provides guidelines on this mapping - some of them are given below. Most of
them are given in ashort form just to give an impression of what kind of guidelineswe
have.

Classesin UML map in general to typesin SDL. Classes of objects with their own
behaviour and with communication with other objects map to processes types, classes
of container objects map to block types, and data object classes map to SDL data types.

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| M e Object and Property Models - and the L anguages for describ- -

Object Modelling

attributes Attributes of objects map to variables of datatypes. A difference between UML and
> SDL isthat attributes of UML objects are just of predefined types, while variables of
variables gp| can be of user-defined types.

Operations Operations are either mapped to remote procedures or to signalsin combination with the
corresponding transition and possible reply signal.

Relations Relationsare not easily mappedto SDL. TIMe makes adistinction between constructive

->7? and illustrative relations. Being aware of this distinction when defining relations helps
perform the mapping. Constructive relations will readily be implemented by a corre-
sponding data base part of the system, whileillustrative relation must be “implemented”
in SDL.

Connec- Connections are mapped to signal routes/channels and corresponding gates on the types
tions involved.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-79

4-80

Object and Property Models - and the Languages for describ- Tl M e
Object Modelling

illustrative
\ relations
2 constructive
relation
LAccessPoint < User
active object class connection
mapped to a block mapped to gate

type of processes

BLOCK TYPE AccessPoint
in)
Panel Door
[

<+“—)
(outp)] € | [(outp)]

[(validity)]

code] [opened,
closed] D

[(validity)]

»
»

Controller [(validity)) CUY [Code] Cc [Code]

P

SYSTEM AccessControl

AccessPoint]

CE

[(validity)] [Code]
P . i
(outp)] [(np)] e AP(100): C|l—-a——p—CentralUnit

AccessPoint ¢

Figure 4-58: Mapping classes, relations and connectionsto SDL

Therelationsin Figure 4-58 (p.4-80) are for illustrative purposes in the mapping of the
AccessPoint class to the AccessPoint block type, while the connection between Access-
Point and User mapsto agate e. The User class of objectsis*mapped” inthefirst round
to processesin the environment of the AccessPoint and in the second round to processes
in the environment of the system.

In afurther mapping of the classesin Figure 4-58 (p.4-80), the classes be in addition be
mapped to classes of objectsin a database of which users may enter which access zones
through which access point. In that mapping therelationsare not just il lustrative but may
map to corresponding relations in the database.

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

TIMe

Sngle
Inheritance

Object and Property Models - and the Languages for describ-
Object Modelling

It isrecommended to use only single inheritance. Thisis readily mapped to the corre-
sponding mechanism in SDL. The difference is that inheritance will have more
implicationsin SDL than in UML, especially for inheritance between process types.
While UML only specifies the inheritance of attributes and operations, inheritance for
process types implies aso the inheritance of behaviour also.

Singleinheritance for data classesis mapped to corresponding inheritance for datatypes
in SDL - the only problem being that only operators can be inherited.

Logging —
AccessPoint

Sy

BlockingAc-
[cessPoint

BLOCK TYPE BlockingAccessPoint
INHERITS AccessPoint c

“« — >

REDEFINED [Enable,
Controller)
Disable]

BLOCK TYPE LoggingAccessPoint
INHERITS AccessPoint

FINALIZED
Controller
LD

[(validity),Code]

¢ lIsc: N
| Controller

Figure 4-59: Subclasses of container object classes mapped to
block typesin SDL

I nheritance between classes are not restricted to UML classes that map to processtypes
or block types. Architecture of systems can be represented by a specia system classin
UML and if using the real aggregation of UML the content of the system objects can be
readily expressed. Subclasses of such system object classes are mapped in the same way
asin Figure 4-59 (p.4-81), just substituting BLOCK with SY STEM in the headings.

If the UML model contain inheritance between the types of eventsin use cases, then the
mapping of thisisto a corresponding inheritance between signal type definitionsin
SDL, see Figure 4-60 (p.4-82).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-81

Multiple
inheritance

Object and Property Models - and the Languages for describ- Tl Me
Object Modelling

OperatorCode
op

Code

cid TestCode
test

SIGNAL Code(integer,integer); o~
SIGNAL OperatorCode INHERITS Code ADDING (integer);
SIGNAL TestCode INHERITS Code ADDING (integer);

Figure 4-60: Inheritance for signals

Multipleinheritance of the special kind where just one of the superclassesisareal super-
classand the other are just “interface classes’ (that is classes with only operations with

no specification of behaviour, and no attributes) can in SDL be represented by inherit-

ance combined with a gate for each interface superclass.

Multiple inheritance in general can be mapped into a type where the properties of the
superclasses are copied into the type corresponding to the subclass (resolving the inher-
itance) or in some cases by aggregation. Thefirst is not recommended, but must be done
in some cases. The second alternative take different forms:

« |f the superclassesare container classes, then the resulting block type may get ablock
for each superclass.

* If the superclasses are active classes corresponding to process types, then careful
specification of these process types - so that they can work both as process types and
as service types (that is no start transitions and input signals context parameters) -
makesit possible to represent multipleinheritance by composing the process type by
means of services. These services are then defined as subtypes of the services types
corresponding to the superclasses, with one of them getting a start transition and
actual signal parameters provided so that servicesdo not have overlapping valid input
signal sets.

 |f the superclasses are data classes, then the resulting data type can be defined as a
struct with each field being of the types corresponding to the superclasses.

Normally a problem with representing multiple inheritance by means of aggregation, in
languages with object references, is that the objects of the resulting subclass cannot be
referenced by object references typed with the superclasses. SDL does not have a gen-
eral object reference concept and process instances can only be referenced by untyped
Plds, so thisisnot aproblemin SDL.

TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| M e Object and Property Models - and the L anguages for describ- -

Object Modelling

part/whole In order to really specify that the objects are part of the containing object and that rela-

-real tionsto these part objectsare only meaningful intheir property of being containedinthis
agorega- opject, TIMe usesthe notation in Figure 4-61 (p.4-83). It is specified that a AC-System
tion object consists of two objects (of class AccessPointsand Central Unit), and that the envi-

ronment communicates with some of these part objects. In UML the User in the
environment would have associ ationsto the class A ccessPoint in general, whilewhat we
want to expressisthat they only have associations with AccessPoints as part of AC-Sys-
tem. Themapping to SDL isstraight forward - hereit isindicated that CentralUnit isnot
an object of aclass but specified directly. The definition of the block type AccessPoint
isleft out in the mapping - it can be defined in a package or as part of the system.

AC-System

Central
Point Unit

SYSTEM TYPE AccessControl

CE

[(validity)] [Code]
® AP(100): cCl— »— CentralUnit
c

P

[outp)] [(np)]

AccessPoint

Figure 4-61: Mapping real aggregation to aggregation in SDL

Relation UML supports a special aggregate association. Depending on how thisis used, it maps
Sg%rega_ - either to whatever kind of relation mapping in SDL is chosen,
- or to relationsin a corresponding data base model,

- ortoreal aggregation in SDL, see Figure 4-62 (p.4-84).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-83

- Object and Property Models - and the L anguages for describ- Tl Me

Property Modelling

AccessPoint

|

Controller

OR OR

PROCESS TYPE
AccessPoint

dcl theDoor PId

BLOCK TYPE AccessPoint

Panel Door
apc:
Controller

to database part to aggregation in SDL
of application

PROCESS TYPE Door

dcl theAccessPoint PId

to Plds as relations

Figure 4-62: Mapping relation aggregation in OMT to SDL

Property Modelling

What is The properties characterize the objects identified in the Object Modelling. It is, how-

property ever, not always the case that the object model has been created before the property

modelling model. During the identification of the objects, properties become clear, and during the
description of properties, the objects and their relations must be established.

The following are some common properties of property descriptions:
» Property descriptions cover specific aspects;
- liveness properties. something good will eventually happen;
- safety properties: something bad will never happen;
- overview of functionality (functions and function lists, functional roles);
- focus oninteraction (use cases, MSC diagrams);
- capacity and timing constraints,

- physical constraints: temperature, humidity, power consumption, concrete
interfaces,

4-84 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| M e Object and Property Models - and the L anguages for describ-

Property Modelling -

- other not so easily formalized properties. modifiability, security, error handling

» Property descriptions may overlap and underlap;
Asan example we are used to accepting that the M SC document will not comprise a
description of all traces possible of the SDL model (object model).

» Property descriptions are often declarative rather than imperative;
While the object model in SDL may be seen as a compl ete imperative description of
the system, property models are often declarative meaning that they express some-

thing which either holds or does not hold in the model.

» Property descriptions supplement object descriptions;

MSC for Property Modelling

The basic notation for property modelling is MSC-96. MSC highlights interaction
between instances based on messages. MSC is most effective when the sequencing of
messages between the acting objectsis of major importance.

The full TIMe contains tutorials on MSC-92 and M SC-96 - the following isjust an

overview.

M SC concentrates on describing the message-sending between instances. Theimportant
invariant for messages is that a message must be sent before it is received.

Figure4-63: An MSC

Open figure

msc User_accepted

User AC System
L 1 L 1
Code
>
OK
-t
Push door
>

N

MSC heading Instance Event

Timeine
(more)

(more)

Message Environment

Figure 4-63 (p.4-85) describes a very simple interaction between a user and an access
control system. The user presentsthe personal codeto the system which then returnsthat
the user is eligible to enter the door. The user then pushes the door open.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

TIMeat aglanhce 4-85

- Object and Property Models - and the L anguages for describ- Tl Me

Property Modelling

instance The actors of an MSC are called instances. They are described by an instance head and
an instance end connected by atimeline as shown in Figure 4-64 (p.4-86).

Figure 4-64: Instance

Open figure
instance name
User instance head
E— e

- timeline (instance axis)

instance end-.

events The instance head and instance end represent the start and end of events on the instance
timeline within the M SC. Thetimeline of an instance contains asequence of events.The
most basic events are output and input of a message. Each message has exactly one out-
put event and one input event. Messages are communi cated between instances or

between an instance and the environment. The environment is represented by the frame
around the MSC diagram.

Figure 4-65: M SC diagram

Open figure
frame
(environment) | msc User_accepted_1
User AC System
the msc name L 1 L 1
Code
>
output . OK
input ———— / Unlock
messagetothe | — Push door '
environment -
I

message name

timeline The events are ordered along each timeline, but events on different timelines are not
ordered.

4 - 86 TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Property Modelling

T| M e Object and Property Models - and the L anguages for describ- -

M SC describe communication between instances. An instance need not be aprocessin
SDL terms. In Figure 4-65 (p.4-86) we see that AC Systemis an SDL system.

M SC describes asynchronous communication. Input is normally interpreted as con-
sumption of the message.

MSC docu- The set of mscsthat are used to describe a specific piece of readlity iscalled an MSC doc-

mentand ument. Relations between different mscswithin aM SC document are called conditions.

Conditions Combining two mscs where the end condition of the first is equal to the start condition
of the second islegal. Combining mscs with unequal conditionsis not legal. In Figure
4-66 (p.4-87) there are two conditions, Idle and Door unlocked.

Open figure

Figure 4-66: Conditions

initia
condition —|

final
condition

-

A

msc User_accepted 3

<

User AC System
Idle >
Code
>
OK

Card out Unlock
SR

Door unlocked >

<

*

*

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

TIMeat aglance 4-87

Coregion

4-88

Object and Property Models - and the Languages for describ-

Property Modelling

TIMe

Figure 4-67: Alter natives by conditions

Open figure

msc Unlocked timeout
User

——

AC System

o

Door unlocked

oor|

Idle

<

>

Lock
—

>
I

msc Unlocked reset
User

AC System

Door unlocked

)

Foor
Push door

Open®&

-
Closed
-—F
Lock

Idle

)

L

The two mscs Unlocked reset and Unlocked_timeout in Figure 4-67 (p.4-88) represent
alternative courses of action from the state Door Unlocked.

Conditions are not synchronization primitives meaning that the different instances are
not “within the condition” all at the sameinstant. The conditionsare merely therefor the

combination of mscs.

Coregion is a concept which is motivated by the fact that sometimes one does not care

in which order a set of events occur.

TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Object and Property Models - and the L anguages for describ- -

Property Modelling

Figure 4-68: Coregion

Open figure
msc User_accepted 4
User AC System
coregion Idle >
Code
\-— Card out
[
< OK Unlock
T _——
Door unlocked >

In Figure 4-68 (p.4-89) the User does not care whether he receives/consumes Card out
or OK first.

Submsc Submsc is motivated by the need to look into an instance for more communication
details. Our AC System instance obviously contains a number of “smaller” instances.
The requirement analysis may want to express details about the internal behavior of the

system.
Figure 4-69: Decomposed
Open figure
declaring
msc User_accepted_5 decomposition

User AC System /
—

< Idle

Code
1 Card out
~ OK
- Unlock
T SRR
< Door unlocked >

**

When we want to define a submsc of an instance we depict that in the instance header,
see Figure 4-69 (p.4-89). The decomposed instance must have the same interface as
given by the instance in the MSC of higher granularity.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-89

Guidelines
for Domain

Property
Modeling

4-90

Object and Property Models - and the Languages for describ-

Property Modelling

TIMe

AC System of Figure 4-69 (p.4-89) states that input of Code is followed in sequence by
the outputs of Card out, Ok and Unlock. To ensure this in the submsc, we sometimes
have to introduce additional (pseudo) messages, see Figure 4-70 (p.4-90). Thisisan
unfortunate aspect of this mechanism.

Open figure

Figure 4-70: Submsc

submsc heading

submsc AC System

Panel

1
Code

Local StationControl

Code

L]

Card out (=

OK

Central Unit
ﬂecomﬁo@

Code

OK

L

OK
-

Synch

=

Unlock

pseudo-
message

Guidelines on Property Modeling

1. Identify separate services which should be offered in the domain.

2. For each service, provide a prose description.

3. For each service, define which roles provide the service.

4. For each service, make the description more precise by:

- Formalizing (1): Transform those aspects which may into aformal language. The

behavior should preferably be described in MSC or SDL.

- Formalizing (2): Those aspects which do not lend themselves easily to descrip-
tionsin MSC or SDL should be described in semi-formal prose and structured

comments.

- Narrowing: Find out what questions were not addressed in the prose version and
make decisions on these matters.

- Supplement: Make sure that the precise description covers all those cases which

the prose covers.
5. Associate every role with objects of the object model (Alignment).

TIMe at aglance

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Guidelines
for Design
Property
Modeling

Object and Property Models - and the Languages for describ-
Property Modelling

1. Take every service of the corresponding domain model and make sure that all roles
are played by objects in the design structure. Remake all domain property descrip-
tions such that they refer to the design software structure which is preferably in SDL.

2. Make the descriptions more detailed by:

- Decomposition: Transform the descriptions such that they apply to the substruc-
tures of the objects and not only to the objects themselves.

- Breaking down: Break down the messages and higher level protocols such that
their internal structure becomes known.

- Revelation: Revea new instances and messages which prove to be interesting
when amore detailed view isto be described.

3. Having reached a precise and detailed description, make surethat it is covered by the
precise, but more abstract corresponding domain description.

4. Make sureto retain the structured comments and associated semi-formal prose of the
domain descriptions in the corresponding design descriptions.

5. Usethe design MSC property model as base for producing SDL process skeletons.
The automatic production of skeletons can be used for discovering inconsistenciesin
the MSC property model. The produced skeletons should then be compared with the
design object model and a complete design SDL model should be produced.

From MSC Property Modelsto SDL Object Models

Thetitle of this section can be alittle misleading - the fact is that what may be obtained
is the construction of SDL Skeletons from MSC Property Models.

MSC isaformal language which iswell suited to express cases of interaction between
instances. SDL isaformal language which iswell suited to expressthe total imperative
behavior of processes one by one. The two notations have different perspectiveson a
system which supplement each other well.

We shall not always expect the M SC descriptions to cover all possible situations, but
those situationswhich are covered areimportant. We should make surethat at |east these
situations are properly handled in the corresponding SDL descriptions,

TIMe provides a ssimple technigue to produce SDL process skeletons for instances of
MSCs. In order to have the produced SDL be apart of the final design it is necessary to
make the M SCs so detailed that the instances of the M SCs correspond directly to pro-
cesses of the SDL design. By careful use of local and global conditionsinthe M SCs, the
SDL skeleton can be automatically derived.

From the SDL skeleton, the design process will add more behavior in order to cover al
aspects of the process behavior. These supplements should not violate the behavior
which was aready generated in the skeleton. Since MSC does not have a formal data
concept, the addition of tasks and decisions is one major activity when supplementing
an SDL skeleton.

Even though a skeleton is only supplemented, it may be necessary to perform analysis
to ensure that the final version of the SDL actually is consistent with the requirement
MSCs.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-91

List of figures Tl Me
Property Modelling
List of figures

TIMe activities, descriptionsand languages 3
The core themes of TIMe covered in this introduction, and supplementing themes 5

Verificationand Validation i 6
SESAM SESAM INC 9
Matching objectsand propertiest 15
Required and provided properties 16
Simpleinteraction property model. 16
Interface and application given aspects.t 17
Domain, environment, and SyStems.t 19
CoNteXt/CONENTo e 21
UML forobject modelling. 24
MSC for interaction propertiest 25
SDL for design and specification of behaviour 26
ThemainactivitiesSin TIMe. e 28
ANAlYSING . .o 29
Domain Analysis Models and Descriptions for the Access Control Domain 31
Domain Statement VL e 32
Theaccesscontrol domain.t e e 34
Attribute specification 34
Domain specific DICoNaryot e 35
Domain ModelSo 36
MSC USer_aCCepted.t e 37
AnalySINg reqUIreMentS.ot e 38
System and itSenVIroNMENt.t 40
Contributions to the different aspectsof asystem. 41
Context MOJEISo 41
MSCsfor domain- and system givenproperties, 42
Property model from domain: MSC User_not_accepted by system 42
System specific property: Blocking Status provided by system and initiated by Operator
42

System Context/Design Outline. i 43
Introducing Panel Server and DoorServer as part of AccessPoint 45

4-92 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

T| Me List of figures

Property Modelling

Concretesystemreferencemodel 46
Application framework referencemodel 47
Specificationand designrelated 49
From domain objectstodesignobjects. 50
Applicationdesignin SDL. 53
Behaviour of Controller according to User Accepted & User Not Accepted 55
Block type AccessPoint with processes. 56
Evolution of domainobjectmodel. 58
Application and infrastructure specific parts of systemsinto aframework. 60
Redesigned Access Control system V3. i 61
Cluster with LocalUnitsand ClusterUnits. 62
AccessPoint used in both LocalUnit and ClusterUnit 63
Access Control Systemtypeasaframework. 64
Block type Cluster as part of framework for Access Control Systems.......... 65
An actual system based uponaframework Ll 65
Attribute specification 69
Theaccesscontrol domain.ot e e 70
Possible classification of Access Points according to logging and blocking functionality
70

Environment entitiesinteract with partsof thesystem 71
Compositeaggregation inUML 71
Applicationdesignin SDL. 72
Block type AccessPoint with virtual Controller processtype................. 73
Virtual processtypeController 74
Block type BlockingAccessPoint as a subtype of AccessPoint. 75
Redefined process type with added statesand transitions. 75
Packagediagram SignalLib. 76
System using a package of type definition 77
Mapping classes, relations and connectionstoSDL 80
Subclasses of container object classes mapped to block typesinSDL 81
Inheritancefor SIgnalso 82
Mapping real aggregation to aggregationinSDL 83
Mapping relation aggregation inOMTtoSDL, 84
AN M S . e e 85

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TIMeat aglance 4-93

List of figures TI Me
Property Modelling

INSEANCE . . . o e 86
MSC diagram.o 86
CoNdItiONS . . .ot 87
Alternativesby conditions. 88
[0 =o' o 89
DECOMPOSEM. . . .ot e 89
SUDIMISC. . . ottt 90

4-94 TIMe at aglance TIMe Electronic Textbook v 4.0 © SINTEF Moified: 1999-07-16

	Introduction
	Figure 4-1: TIMe activities, descriptions and languages
	Figure 4-2: The core themes of TIMe covered in this introduction, and supplementing themes
	Figure 4-3: Verification and Validation
	TIMe from SISU
	What’s in TIMe for the manager
	What’s is TIMe for the designer

	The Why, What and How of TIMe
	Figure 4-4: Sesam Sesam Inc
	Introduction

	TIMe Essentials
	Figure 4-5: Matching objects and properties
	Figure 4-6: Required and provided properties
	Figure 4-7: Simple interaction property model
	Figure 4-8: Interface and application given aspects
	Figure 4-9: Domain, environment, and systems
	Table 4-1: The three aspects of the access control system
	Figure 4-10: Context/ content
	Figure 4-11: UML for object modelling
	Figure 4-12: MSC for interaction properties
	Figure 4-13: SDL for design and specification of behaviour

	System Development Activities
	Figure 4-14: The main activities in TIMe
	Analysis
	Figure 4-15: Analysing
	Domain analysis
	Figure 4-16: Domain Analysis Models and Descriptions for the Access Control Domain
	Domain Statement: what is it all about
	Figure 4-17: Domain Statement V1
	Domain object model: modeling the established domain concepts
	Figure 4-18: �The access control domain
	Figure 4-19: Attribute specification
	Dictionary: not just a data dictionary
	Figure 4-20: Domain specific Dictionary
	Domain property model: modeling the needs
	Figure 4-21: Domain Models
	Figure 4-22: MSC User_accepted
	Requirements analysis
	Figure 4-23: Analysing requirements
	Figure 4-24: System and its environment
	Application specification
	Figure 4-25: Contributions to the different aspects of a system
	Figure 4-26: Context models
	Figure 4-27: MSCs for domain- and system given properties
	Figure 4-28: System specific property: Blocking Status provided by system and initiated by Operator
	Figure 4-29: System Context/Design Outline
	Figure 4-30: Introducing PanelServer and DoorServer as part of AccessPoint
	Architecture specification
	Figure 4-31: Concrete system reference model
	Framework/Infrastructure specification
	Figure 4-32: Application framework reference model
	Table 4-2: Application, framework and architecture aspects for the access control system

	Design
	Figure 4-33: Specification and design related
	Application Design: where the real functionality is designed
	Figure 4-34: From domain objects to design objects
	Figure 4-35: Application design in SDL
	Figure 4-36: Behaviour of Controller according to User Accepted & User Not Accepted
	Figure 4-37: Block type AccessPoint with processes
	Figure 4-38: Evolution of domain object model
	Architecture Design: choice of implementation platform
	Framework Design: from Infrastructure to Framework
	Making infrastructure
	Figure 4-39: Application and infrastructure specific parts of systems into a framework
	Figure 4-40: Redesigned Access Control system V3
	Figure 4-41: Cluster with LocalUnits and ClusterUnits
	Figure 4-42: AccessPoint used in both LocalUnit and ClusterUnit
	Making frameworks
	Figure 4-43: Access Control System type as a framework
	Figure 4-44: Block type Cluster as part of framework for Access Control Systems
	Figure 4-45: An actual system based upon a framework

	Implementation
	Instantiation

	Object and Property Models - and the Languages for describing them
	Object Modelling
	UML for Object Modelling
	Figure 4-46: Attribute specification
	Figure 4-47: �The access control domain
	Figure 4-48: Possible classification of Access Points according to logging and blocking functiona...
	Figure 4-49: Environment entities interact with parts of the system
	Figure 4-50: �Composite aggregation in UML
	SDL for Structure and Object Behaviour
	Figure 4-51: Application design in SDL
	Figure 4-52: Block type AccessPoint with virtual Controller process type
	Figure 4-53: Virtual process type Controller
	Figure 4-54: Block type BlockingAccessPoint as a subtype of AccessPoint
	Figure 4-55: Redefined process type with added states and transitions
	Figure 4-56: Package diagram SignalLib
	Figure 4-57: System using a package of type definition
	Guidelines on Object Modeling
	From UML Models to SDL Models
	Figure 4-58: Mapping classes, relations and connections to SDL
	Figure 4-59: Subclasses of container object classes mapped to block types in SDL
	Figure 4-60: Inheritance for signals
	Figure 4-61: Mapping real aggregation to aggregation in SDL
	Figure 4-62: Mapping relation aggregation in OMT to SDL

	Property Modelling
	MSC for Property Modelling
	Figure 4-63: An MSC
	Figure 4-64: Instance
	Figure 4-65: MSC diagram
	Figure 4-66: Conditions
	Figure 4-67: Alternatives by conditions
	Figure 4-68: Coregion
	Figure 4-69: Decomposed
	Figure 4-70: Submsc
	Guidelines on Property Modeling
	From MSC Property Models to SDL Object Models

	List of figures

