T | M @ TIMeElectronic Textbook

- Dictionary for TIMe

ADSIraCtioN.
ADStract System
A ON. .. e e
ACtIVEODJECT
A O o e e e e
ACtUal gate. . . oo
AQOregalioN . . .ot
ARENaliVE . . .o e
APPHICALION. . . .
Architecture
ASENISK S, . . oo
At DULE. . . o e
Attribute specification
AN DULES . . . e e

DlOCK type. . . o
block typediagram.
block (type) heading
block typereference.

Classdiagram.
Classwith constraintsonitsenvironmentcoviun ..
Classes defined by meansof aggregation
Completeabstract system i
CONCrEte SY SO . . . o
ConditioNn (MSC 92)ot e
ConditioNn (MSC 96) it

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe

21-1

21-2

CoNfIgUIaLiONt e 16
Configuration Controlt 16
Configuration Item. e 16
Configuration Managementt 17
Configuration Control Board. 17
ConfigurationManagement Plan. i 17
ConNectioN POINt 17
CONNECHIONS . . . ettt e e 18
Constructive part of adescription 18
GOt Nt . . . e 18
CONtEXE . . . 18
(@0 =" [o 19
Counter counter implementation it 19
Counter implementation. i e 19
Ol . . o ittt 19
dashed entityo 20
JECISION . . e 20
DeClaratiVve. . . .o 20
DESCIIPLION. . . et 21
Designorienteddevelopment 21
diagramheading. e 21
DIStillEry . 22
DoCUMENt. . . . e 22
DOMAIN. . . . 22
Domain auxiliary descriptions. 22
Domain desCriptionst e 22
Domain diCtionaryov i 23
Domainmodel 23
Domain statementt e 23
Domain Statemento 23
entity Kinds. 23
ENVIironNmeNnt. 24
BNVITONMIENE . . o .ottt et et e et e e e e 25
ENVIroNmMeNnt. 25
BVeNt . 25
EX PSS VENESS. . . . ottt 25
Family desCriptionso e 25
finalised INPUL. 26
fiNalised ProCESS tYPE. . . . oottt e 26
Formal SemantiCs.o 26
Framework 26
Functional propertyt e 27

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

A, . .o 27
General order relation 27
Generalisation/specialiSationt 27
HEl DS, o 28
HMSC Start ..o 28
[dentification 28
dentifier. ... 28
[Nustrative part of adescription. i 29
Implementation e 29
IMPEIatiVe . . . o 29
Incomplete messages (lostandfound). i 30
] 31
INPUL BVENE 31
INSEANCE . . . e 31
INSLANCE . . . oo 31
INStanCce desCriptionSo 32
Interface ROle. 32
LanNgQUagE o 32
LIVENESS PropertY. . . . oottt e 33
local variables 33
Localisation (NeStiNG). . . o« oot e e 33
LOOp (HMSC) .. e e e e 33
MESSagE ot 33
Method. 34
Methodologyo 34
Model checking 34
MSC diagram.ot 34
MSC dOCUMENE . . . oot 35
MSC headingt e 35
MSC headingt 35
MSC refEreNCe. . . . oo 35
M T . e 36
Non-functional Property. 36
NOLALION . . . e 36
Object classes with attributes, relationsand connections 36
Objectsand Object SetS.ot e 37
Objectmodel e 37
OPEraliONS . . oottt e 38
1007 = (0] 38
0111011 38
OULPUL BVENE. . . e e 39
PACKAOE . . oot 39

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-3

21-4

packagereferenceclause. 40
PAJE NUMDEITNG . . . oottt et et e e e e e 40
PasSIVE ObJECE. 40
Physical node. e 40
PrOCEAUNEottt e e e e e e 41
procedurecall. e 41
procedure headingt 41
procedurereference 42
procedure Starto e 42
PrOCESS . . . 42
IO ESS . . . et it e e e 42
PrOCESS diagram . . . oot 43
ProCeSS (FEfEreNCe)ot 43
PrOCESS Sl . . . ettt e 43
PrOCESS LY . o et ittt e 44
processtype diagramo 44
process (type) headingo 45
PrOOf . . 45
PrO eIty . . e 45
PrO eIty . . e 45
Property model. 46
Property oriented development 46
redefined ProCesStypeo oot e 46
ReferenCe EXPreSSIONot e 46
Real aggregation e 47
Refinement. 47
Relation aggregationt e 47
REAiONS 47
REAiONS 48
Reliability. 48
FEMOLE PrOCEAUIES ottt ettt e e e e e ettt 48
Restrictive condition e 49
FEEUI L e e 50
REVISION . . . 50
ROIE . 50
Safety PrOpertY. . . oo 50
SO B . it e e ol
SCOPE UNIES . . et ettt et e e e 51
SV G . ottt 51
S Y7o 52
SEIVICE (TEfEIENCE) oot e 52
service(type) heading 52

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

signal definition 52
SIgNal [ISt . 53
SIgNAl TOULE. . . .ottt e 53
SOftWareNOdeo 53
SPECIAlISAIONo e 53
SPECITICAION .. e 54
Stakeholder 54
S 1 55
2 = 55
B . . e e 55
BIUS . . . ottt 55
SUbJECt ENtItIES. . . . oo 55
SUDMSC (MSC 02) . .ottt e e e 56
SYNMINESIS . . . 56
(= 1 0 56
Systemfamily 57
System family statement 57
Sy EM NS ANCEot 57
system (type) heading 57
BBSK . . o 58
text symbol. 58
Timeline (INStaNCe aXxis) oo vttt 58
L0 58
L1110 58
Thedante Law 60
TraNSACtiONS . . . oot 61
TraNSItION ... 61
TraNSPAIENCY . . . oo e e e e e 61
Validation. 61
variabledefinition 62
VAl ANt . . 62
VErfiCatioN. 62
VB S 0N . . et 62
VY . 62
VIrtUal ProCESS YRR .« . . ot et 63
VIRUalILY . .o e 63
virtuality constraint 63
virtual (input) transition.o 64
Walkthrough. e 64

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-5

TIMe

Abstraction

(Collins): Having no reference to material objects or specific examples.

(Coad,Y ourdan): The principle of ignoring those aspects of a subject that are not rele-
vant to the current purpose in order to concentrate more fully on those that are.

Abstract system

Action

An abstract system is a system which existsin a conceptual, abstract world.
Abstract systems are composed from abstract components.

According to Collins (1986) an action is:
» something done, such as an act or deed.

In TIMe an action is seen as an occurrence of an activity during some development pro-
cess. It takesaspecific state of input (amilestone) and produces aspecific state of output
(another milestone). The general rules and guidelines that should be followed during an
action are described for the activity it is an occurrance of.

Active object

Actor

21-6

The purpose of active objectsisto take care of transformations and control the need to
perform. They are justified more by what they do than by what they represent. Their
behaviour is often detailed and related to physical processes. A call handling processin
atelephone system, isone example. It interactswith physical usersand controlsphysical
connections.

An actor is astake holder that takes actively part in the services or work processes of a
Domain.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

Actual gate

The message gates are used when references to the MSC are put in awider context in
another MSC. The actual gates on the MSC reference are then connected to other mes-
sage gates or instances. Similar to gate definitions, actual gates may have explicit or
implicit names.

A message gate always has a name. The name can be defined explicitly by a name asso-
ciated with the gate on theframe. Otherwisethenameisgivenimplicitly by thedirection
of the message through the gate and the message name, e.g. "in_X" for agate receiving
amessage X from its environment.

<actual gate area> ::=

<actual out gate area> | <actual in gate area> |

<actual order out gate area> | <actual order in gate area>

<actual out gate area> ::=

<void symbol> [is associated with <gate identification>]
isattached to <msc reference symbol>

[isattached to { <message symbol> | <lost message symbol> }]

Note: The <actual out gate area> is attached to the open end of the <message symbol>
or <lost message symbol>.

<actua in gate area> ::=

<void symbol> [is associated with <gate identification> |
isattached to <msc reference symbol>

[isattached to { <message symbol> | <found message symbol>} |

Note: The <actual in gate area> is attached to the arrow head end of the <message sym-
bol> or <found message> symbol.

(more)
<actual order out gate area> ::=
<void symbol> [is associated with <gate identification>]
is attached to <msc reference symbol>
isfollowed by <general order area>

<actual order in gate area> .=

<void symbol>[isassociated with <gate identification> |
is attached to <msc reference symbol>

isattached to <general order area>

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-7

TIMe

Aggregation

All non-trivial systems are composed from components. The process of putting compo-
nentstogether to form awholeis called aggregation. Aggregation enables usto associate
asingle concept and a name with acomposite object. Thishelpsto simplify matters con-
siderably when we are dealing with the object asawhole. But to build the object and use
it correctly we need to understand what it consists of.

An aggregate is an object in itself and the part objects are parts of thisobject only. This
ISsin contrast to aggregation just by using ordinary relations.

The opposite process of decomposing awhole into partsis called partitioning (or
decomposition).

We distinguish between relation aggregation and real aggregation.

Alternative

The alt operator defines alternative executions of M SC sections. This meansthat if sev-
eral M SC sections are meant to be aternatives only one of them will be executed. In the
case where aternative M SC sections have common preambl e the choice of which MSC
section will be executed is performed after the execution of the common preamble.

Application

An application is an abstract system that provide the main services of asystemand is
therefore the most valuable part of a system from a user point of view.

Architecture

An architecture is an abstraction of a concrete system representing:

» theoveral structure of hardware identifying at least all physical nodes and intercon-
nections needed to implement an abstract system;

» theoverall structure of softwareidentifying at least all software nodes, software com-
muni cations and relations needed to implement an abstract system (in terms of
processes, procedures and data).

asterisk state

21

8

An asterisk state is a shorthand for all states except those listed in an accompanying
asterisk state list.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Attribute

The state names in an asterisk state list must be distinct and must be contained in other
state list in the enclosing body or in the body of a supertype.

Z.100

is an aspect of a Configuration Item that gives additional information, e.g. about its
functionality.

The attribute is not part of the Identification of the item.

Attribute specification

Attributes are specified by means of a name and atype:
<attribute name> [: <type identifier>]
It isallowed to drop the type information on attributes and just give the attribute name.

In UML, types being used for defining attributes by themselves can be defined as
classes, they may be predefined classes or they may be predefined simpletypeslike I nte-
ger, Text, etc.

Click here for an example.

Attributes

Attributes of objectsare “value’ properties that are not covered by part objects (aggre-
gation). Attributes are defined by a name and atype. In Domain Object Modelsthisis
informally specified, but it is still worthwhile to use atype that will be defined asan
attribute type or classin the Design Object Model.

For the specification of attributesin UML, see attribute specification in UML.
For the specification of attributesin SDL, see variable definition in SDL.

Automaton

An automaton is an abstract machine which can bein aset of states. It takes a stream of
input symbols. The consumed input symbol and the state together determines which
actionsthe automaton takes. After the actions have been performed the automaton enters
another state. The passage from one state through the consumption of an input symbol
to another state is called a transition.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-9

Basdline

TIMe

Finite State Machine (FSM) is an automaton where the state space and input al phabets
arefinite.

In our methodology, SDL uses FSMsastheir theoretical base for describing interaction
processes.

isthedesignation of a“snap-shot” (typically intime) of aproduct or system, with aspec-
ification of al Identifications of all Configuration Items that are part of it.

A baseline may also have amore specific definition, implying that all the configuration
itemsincluded in the baseline have a certain Status.

Behaviour associated with an object model

block

21-10

If aclass of objects hasbeen identified as part of the object modelling, thenitispossible
to associate behaviour with objects of this class. If some behaviour has been identified
without being associated with any object or class (but arole), then it is possible to asso-
ciateit with classes later or combine it with other behaviour specifications to new roles
or classes.

Depending upon the nature of the behaviour that is desirable to express, it is either
expressed in terms of MSC or in fragments of SDL process graphs. The latter may be
applicableif the analysisis based upon existing specificationsin SDL or in caseitis
desirable to specify behaviour properties like “instance of type AccessPoint” shall
aways (that isin any state) accept aLog signal and respond to the Logger with the cur-
rent status of the point”.

A block isa container of processes (or of blocks, that in turn may contain processes or
blocksetc.). Processes of ablock are contained in process setsthat are connected by sig-
nal routes.

A block is created as part of the creation of the enclosing block or
system. All blocks are created as part of the system creation, that is CentralUnit
there is no dynamic creation of blocks.

A block isspecified either directly (singular block), like centralunit, or
asablock set according to ablock type. The block setapisnot aref- |g 45100): ¢

erence (as centralUnit). Instead it designates a set of block instances. AccessPoint
The example here specifies a set of 100 blocks of type AccessPoint.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

In the latter case, the AccessPoint must have been defined as a block
type, as shown here:

AccessPoint

The block centralunit is defined in a separate block diagram, while the
properties of the blocksin the s block set is defined by the block type
LocalSation. A block typeis defined by ablock type diagram. To see ablock type defined
in terms of a substructure of blocks, look at block type diagram of AccessPoint with
block substructure.

Z.100

block set

Type-defined blocks are contained in block sets. A block set isafixed number of blocks
with properties according to a block type.

e Is(100): C
LocalStation

The set of LocalStationsis called |s and the number (100) designates the cardinality of
the set. All the block instances within a block set typically have the same relationship
with its surroundings (given by the channels).

A channel connected to ablock set (viathe gates e or C) will actually represent a set of
channel instances.

A block setisnot an array, so the thirteenth block cannot beidentified by e.g. IS(13). The
number of elementsin ablock set is determined when the system is created, all blocks
in the set are created as part of the creation of the system, blockswill be permanent part
(instances) of the system instance, and sets of blocks cannot be created dynamically.

Z.100

block type

A block type defines the common properties for a category of blocks.

Block types are defined in block type diagrams, and these may be referenced by means
of block type references.

Block types may contain aconnectivity graph of block instances connected by channels.
This makes up a structure of nested blocks. At the leaves of this structure there are
blocks which contain processes. In SDL, block types may not contain both blocks and
processes at the same time.

I'n addition to containing structures of blocksor structures of processes, block types may
contain other type definitions. This makes up the scoping hierarchy of SDL. Namesin
enclosing type definitions are the only names visible.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-11

- TIMe

Block types may contain datatype definitions, but no variable declarations. Thisfollows
from the fact that processesin SDL do not share data other than signal queues. They
share asigna queue in the way that one process appends (output) signals to the queue
(the input port), while the other process consumes (input) signals from the same queue.
Appending and consuming signals are atomic, non-interruptible operations. The input
port is the basic synchronisation mechanism of SDL.

Block types may contain process types, service types and procedures as well as block
types and data types.

Z.100

block type diagram

A block type diagram defines the properties of ablock type.
Z.100

block (type) heading
The heading of block diagrams defines the name of the block.

The heading of block type diagrams defines the name of the block type, possible formal
context parameters, whether the block typeisvirtual or not and if it inheritsfrom another
block type.

Z.100

block type reference

Block types are defined in block type diagrams, and they are referenced by means of
block type references. The block type reference indicates in which block or system
scope unit the block type is defined.

Z.100

Casting
Casting is the process of associating roles with their acting objects.

The origin of theword isin theatres where roles are played by actors and they comprise
the cast of a performance.

21-12 Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

channel

A channel isaone-way or two-way directed connection. It ischaracterised by thesignals
that it may carry; these constitute the signal list(s) of the channel. A channel hasasignal
list for each direction.

One or two arrows indicate the direction(s) of the channel.

Channels connect blocks or block sets with other blocks or block sets, or with the envi-
ronment of the system. It provides a (one or two way) communication path for signals.
If there is no channel between two blocks, then processes in these two blocks cannot
communicate by signal exchange. Processes may, however, communicate by means of
remote procedure calls without channels connecting the enclosing blocks. A channel
cannot connect a block or block set with itself.

Channels may be delaying or non-delaying.
A delaying channel is specified by a channel sym-

bol with the arrows at the middle of the channd!: [(Va"ﬁy)] [igde]

The delay of signals is non-deterministic, but the C

order of signalsis maintained.

A non-delaying channel is specified asfollows, that lidit

iswith the arrows at the endpoints: i(va ity [COdeL
Associated with each direction of achannel arethe C

types of signalsthat may be conveyed by the chan-
nel. The list enclosed by the signal list symbol can be signals (as e.g. Code) or signal
lists (as e.g. validity) enclosed in ().

Channels connected to the frame symbol represent the connections to the environment.
Z.100

Classdiagram

A classisdefined by aclassdiagram: aframe symbol with aheading (name and possibly
inheritance specification), attributes, operations and a contents.

If it isdesirableto specify theinheritance as part of the class symbol and not graphically,
then the following heading is used, instead of just the class name:

<heading>::= <class name> [<inheritance>]
<inheritance>::= inherits <classidentifier>

Example:

LoggingAP inherits AccessPoint

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-13

TIMe

Class with constraints on its environment

Classes are often defined with a specific purpose in mind, and especially for the behav-
iour of aclass (typically becoming aprocesstypein SDL) it is hecessary to know what
other processes will be in the environment. Thisistypical for the scenario with several
equally “important” objects that have to co-operate in order to do atask. It will, how-
ever, reduce the reusability of the classin other contexts where these other objects will
not be. A quite different scenario is the specification of atypical “server” object class
that should work in any context and where the behaviour is independent on the behav-
iour of the client objects.

A specification of aclass with constraints on it environment contains the following
elements:

» Theclassdefinitioninfocus may contain adefinition of the attributes of the class (the
intention).

» Theenvironment of aclassisimportant for the understanding of its purpose and con-
straints. Therefore, the environment of importance has been depicted outside the
class. Entities in the environment represent roles.

* Whentheclassisinstantiated therewill be entitiesin the actual instance environment
that will play the roles. Therefore, all instances must comply with the roles given to
them by the other instances.

A class definition may include a prescription of what we consider avalid instance envi-
ronment. The entities and relations in the environment of a class represent roles that
shall be played by actorsin the environment of an instance of the class.

Classes defined by means of aggregation

21-14

A crucial pointin UML (and inthe TIMe method as awhole) isthe notion of real aggre-
gation. Most existing notations do not support this, but only a specia containment
relation.

The notation for aggregation is to take the existing notation for an object or class and
extend it with a contents that contains objects and object sets being related and/or
connected.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

<heading>
<attributes> class of objects

in the environment
<operations>

T N1 :

object or object set \

in the environment contents

Complete abstract system

A complete abstract system models as completely as practically possible the abstract
functionality implemented in a concrete system.

It coversthe Application and the infrastructure functionality supporting the Application.
Its behaviour is avalid model of the real behaviour and its structure is similar to the
structure of physical nodes in the concrete system.

Concrete system

A concrete system isareal system which is part of the physical world.

In TIMe, concrete systems are composed from physical parts and software that execute
to provide servicesto its users.

Condition (MSC 92)

A condition describes either a global system state (global condition) referring to all
instances contained in the MSC or a state referring to a subset of instances (non-global

condition). In the second case the condition may be local, i.e. attached to just one
Instance.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Dictionary for TIMe 21-15

TIMe

Condition (MSC 96)

A condition describes either a global system state (global condition) referring to all
instances contained in the MSC or a state referring to a subset of instances (nonglobal
condition). In the second case the condition may belocdl, i.e. attached to just one
instance.

<condition area> ;.=
<condition symbol> contains <condition name list>
is attached to { <instance axis symbol>*} set

Configuration

isa particular composition of a product or (sub)system from particular components
(items) with adefined functionality.

Configuration Control

The formal guidelines for

 describing the configuration of a system or product on the basis of the identification
and status of each Configuration Item it consists of

* describing the derivation process and rules from source components through derived
components to a complete system

 coordinating and approving changes in this description

Configuration Item

21-16

Isan entity which is subjected to Configuration Management and is treated as atomic
(indivisible) in this respect.

A configuration item may consist of parts, but these parts are then not managed as parts
according to configuration management (e.g. a printed circuit board may be a configu-
ration item, while the components on it are not subjected to configuration management).

A configuration item is concerned with the (syntactic) descriptions that a system con-
sists of, and not the (semantic) building blocks in the system domain.

Isalso informally called part, entity or component.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

Configuration Management

The formal guidelinesfor
* identifying and defining the Configuration Items a system is composed of

recording and reporting the status of entities and requests for change throughout the
components life-span

» evaluating and initiating changes
 controlling the change process
» verifying the release of system versions

Configuration Control Board

A body whichis

» responsible for evaluating change requests
 capable of ordering their execution
 capable of monitoring their completion

Configuration Management Plan

A document which describes how Configuration Management shall be carried out in a
project or for a product. It describes:

» rolesand roleresponsibilities

* the process for evaluating and implementing change

It defines:

» component statuses and corresponding approval criteria
* identification criteria

» methods for inspection, approval, filing etc.

* typesof itemsto be managed

* toolsto be used

Connection Point

The connection points are introduced to simplify the layout of HM SCs and have no
semantical meaning.

Connection points are nodes which make it possible to reduce the number of branches
since several parallel branches with the same start and end give no additional meaning.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-17

TIMe

<node area> ::=
<hmsc reference area> | <connection point symbol>
| <hmsc condition area> | <par expr area>

Connections

Objects are connected if they are involved in communication with each other. Thisis
different from objects being related, as thiswill only imply that the objects may be
reached by navigating along the relations.

When using SDL as the design language, connected objects will mainly be objects that
will be represented by blocks or processesin SDL.

Constructive part of a description

Content

Context

21-18

A constructive part of adomain object or property model description isapart that may
be automatically transformed into a corresponding design.

Examples are parts of object modelswith relations that may be transformed to database
schemes; a subtype relation between two typesin the domain object model that istrans-
formed to the corresponding relation between the corresponding SDL process types.

The content of an object model consists of astructure of internal entities or abehaviour.
The structure may be decomposed over severa aggregation levels. The structural com-
ponent may be instances of types defined in other object models.

Property models associated with the content will specify properties of internal objects
and interfaces.

The context of an object model consists of the entity being modelled, considered as a
black box, and its environment, where the environment consists of other entitiesthat are
known to or that interact with the entity being modelled. Thisservesto describethe envi-
ronment and the interfaces as well as other external relationships.

The environment of atype consists of conceptual entities, called roles, relations and con-
nections. The environment of an instance consists of actual entities playing theroles.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

By associating property models with the context it is possible to specify the external
properties that the object provides, as well as the propertiesit requires from its
environment.

Coregion

The total ordering of events along each instance in general may be not appropriate for
entities referring to a higher level than SDL -processes.

Therefore a coregion isintroduced for the specification of unordered events on an
instance. Such acoregion in particular covers the practically important case of two or
more incoming messages where the ordering of consumption may be interchanged.

Counter counter implementation

[Keen 81]: How to cope with counter implementation:

1. Make sure you have a contract for change

2. Seek out resistance; treat it as asignal to be responded to
3. Rely on face-to-face contact

4. Become an insider; work hard to build personal credibility
5. Co-opt usersearly

Counter implementation

[Keen 81]: How to oppose a decided change without showing your face:
1. Laylow

2. Relyoninertia

3. Keep things complex, hard to coordinate, and vaguely defined

4. Minimize the legitimacy and influence of the change agent

5. Exploit the lack of knowledge of the change agent

Must be met by counter counter implementation.

create

A process may create processesin other process setsin the same block, possibly provid-
ing actual parametersto the new instance.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-19

TIMe

The create line (dashed line with arrowhead) indicates possible creations. Create lines
are optional.

Z.100

dashed entity

decision

A dashed entity is the graphical way of representing an entity that isinherited from a
supertype and which needsto be used in the definition of the subtype. There are dashed
block sets and process sets, services and gates.

The Z.100 terminology is existing entity.

An existing block set/block may be connected by channel, and these will then be there
in addition to those specified in the super type.

An existing process set/service may be connected by signal routes, and these will then
be there in addition to those specified in the super type.

An existing gate can have constraints in terms of signals on the endpoints of the gate
specified, and these are then added to the inherited gate and will then apply in addition
to those of the inherited gate.

Inthe PR version of a specification, inherited entities are ssmply identified by name.
Z.100

A decision transfers the interpretation to the outgoing path whose range condition con-
tains the value given by the interpretation of the question.

Z.100

Declarative

21-20

An declarative description is a description which focuses on how things are rather than
how they are achieved.

From Webster:
declarative: making a declaration : DECLARATORY
See also imperative.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

Description

A description isastatement or account that describes. It isasymbolic representation that
enablse communication and reasoning about some subject. Descriptions may be
expressed on avariety of mediausing a variety of languages and notations.

In TIMe, descriptions are contrasted with documents, which are considered as the phys-
ical carriers of descriptions.

Design oriented development

An approach to system development where systems are understood and maintained
mainly in terms of abstract design description in some notation or language.

Design oriented development isat alower process maturity level than Property oriented
development, but higher than implementation oriented devel opment, where “the code
documents the system”.

diagram heading

In the upper left-hand corner of the first page of diagrams, we find the heading.The
heading defines the name of the entity, it may contain definition of formal parameters,
context parameters, it may specify if atypeinherits from another type and the virtuality
of atype (virtual, redefined or finalised).

The heading of the first page of a diagram must be afull heading of the form:
<heading> ::= <kernel-heading> [<additional-heading>]
while
the following pages only need akernel heading:
<kernel-heading>::= [<virtuality>] [exported]
<diagram-kind> [<qualifier>] <diagram-name>

The kernel heading depends upon the diagram kind, see
» gystem (type) heading

* block (type) heading

* process (type) heading

* service (type) heading

* procedure heading

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-21

TIMe

Distillery

Distillery is originally where hard liquor is being made. To distill means to separate
some substance from some other substance. It may also mean to purify.

Here we use description distillery to mean the process of purifying the description
through separating the precise whole from its constituents.

Document

Domain

A document isapiece of paper, abooklet, etc.; providing information esp. of an official
nature. In TIMe Documents are physical carriers of information. Thisinformation may
be local to that document, or it may be fetched from descriptions and models (whole or
partial models). Documents are often made for specific occasions and audiences, e.g. a
contract, areview document, a user manual.

A description or model may appear in several documents, therefore the descriptions or
models should be maintained separately from the documents.

A document may be seen as a*“ snapshot” at a particular point in time. As such it need
not be maintained, although it may be.

The (problem/application) domain models a part of the real world having similar needs
and terminology, and where a system instance may be a (partial) solution to some need
(the problem). It is not specific to a particular system or system family, but rather to a
market segment. It covers common phenomena, concepts and processes that need to be
supported to solve the problem, irrespective of particular system solutions.

Note that thedomainislike atype; it isageneralised concept covering the common fea-
tures of many domain instances. Hence the Domain is not a set of occurrences, but a
general pattern for one occurrence.

Domain auxiliary descriptions

Domain Auxiliary descriptionswill often beinformal text and illustrations used to help
reading the other Domain Descriptions.

Domain descriptions

21-22

A domain description describes a (problem/application) domain.
In TIMe domain descriptions are organised in:

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

domain models;

domain statements;

domain dictionaries;

domain auxiliary.

Domain dictionary

A Domain Dictionary is dictionary over common domain terminology.

Domain model

A Domain Model isaformal definition of a Domain expressed in terms of Object Mod-
els and Property Models (collections of classes with attributes and relations and
associated properties). To fully defineaDomainit ispossible to use Domain Modelson
several abstraction levels.

In TIMe, Domain Models are expressed using OMT/UML, MSC and (possibly) SDL.

Domain statement

A Domain Statement is a concise statement about a Domain, and is normally expressed
In prose.

Domain Statement

A (problem) domain statement is a concise description of the problem domain with
focus on stakeholders and their needs, the essential concepts, functions and work pro-
cesses, rules and principles. It should also clearly state the nature of the problem, i.e.
what one wants to achieve.

entity kinds
SDL defines the folowing different kinds of entities:
» packages
e system
o systemtypes
* blocks

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-23

TIMe

» block types

» channels

e gignal routes

e gignals

e gates

o timers

* block substructure
» channel substructures
* processes

* processtypes

* services

e sarvicetypes

* procedures

* remote procedures
» variables (and formal parameters)
e synonyms

* literals

* operators

* remote variables
» datatypes

e generators

e gignd listsand

* views.

Environment

21-24

An MSC describes the communication between a number of system components, and
between these components and the rest of the world, called environment. It is assumed
that the environment of an MSC is capabl e of receiving and sending messages from and
to the Message Sequence Chart; no ordering of message events within the environment
is assumed. Although the behaviour of the environment is non-deterministic, itis
assumed to obey the constraints given by the Message Sequence Chart.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

environment

The environment consists of aset of SDL processes that may send signalsto the system
and which may receive signals from the system.

Z.100

Environment

Environment isthe surroundings of an M SC. Whenthe M SC is placed in awider context
my using M SC references, the communication with the environment from inside the
M SC diagram should match the communication with the M SC reference which refer-
encesit.

The environment is represented by the diagram frame.
Communication with the environment goes through gates.

Event

The instance definition provides an event description for message inputs and message

outputs, actions, shared and local conditions, timer, process creation, process stop. Out-
side of coregionsatotal ordering of eventsisassumed along each instance-axis. Within

coregions no time ordering of eventsis assumed.

Expressiveness
means that the language can describe the important aspects of the system.

From Webster:
expressive: 3: full of expression : SIGNIFICANT

Family descriptions
A system family description describes a system family.
In TIMe, family descriptions are organised in:
» family models;
o family implementations,
o family statements;
» family dictionaries;

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-25

- TIMe

» auxiliary descriptions.

finalised input
A finalised input isaredefinition of avirtual input transition that cannot be redefined in
further subtypes. A virtual input is a special case of avirtual transition.

Z.100

finalised process type

Isafinalised redefinition of the corresponding virtual process type in the super block
type, and itisnot virtual, so that it can not be redefined in further subtypes of this block
type.

A final redefinition of the process type must be a subtype of the type identified in the
virtuality constraint.

Z.100 (virtual types)

Formal Semantics

Formal semantics means explaining the meaning of the M SC description by referring to
adefinition of the language in mathematical (logical) terms.

Theformal semanticsof MSC-92 isexpressed in aprocessalgebra. The point of describ-
ing the semantics mathematically is that proofs may be performed automatically and
stringently.

Framework

A framework is an abstract system or acollection of (large) system component with two
parts:

» aredefinable application;

» aconfigurable infrastructure that takes distribution into account, and contains all
additional behaviour and supporting functionality needed to support the application
in the concrete system.

21-26 Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

Functional property

A functional property is a property which is measurable in an abstract system.

Functional properties characterise the behaviour of abstract systems, and can be mea-
sured by observing the abstract system.

gate

A gateisapotentia connection point for channels/signal routes when connecting sets
of blocks/processes/services. The same symbol isused in al cases.

Gate are defined in block/process/service types and used when connecting sets or
instances of these with channels/signal routes.

The signal list associated with the endpoints represents constraints (on incoming/outgo-
ing signals) the gate.

Z.100

General order relation

A general order relation isabinary relation between two message events. It defines a
sequencing between the two events which otherwise would not have been defined.

General order relations may also be completed viagates. An order gate connectsgeneral
order relations of an M SC diagram with an event of another M SC diagram. Order gates
must be explicitly named.

Generalisation/specialisation

For classification of concepts we have the notions of generalisation and specialisation.
Generalisation is ameansto focus on similarities between a number of concepts and to
ignoretheir differences. To generalizeisto form aconcept that coversanumber of more
special concepts based on similarities of the specia concepts.

The intension of the general concept is a collection of propertiesthat are al part of the
extension of the more special concepts. The extension of the general concept contains
the union of the extensions of the more special concepts. The inverse mechanismisto
specialise: to form amore specia concept from a general one.

Note that the exact meaning of specialisation will only be given wheniit isappliedin a
formal language. When using specialisation in the domain object modelling it is recom-
mended to useit in away that will not be very different from the meaning in the design.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-27

Helpers

TIMe

These are general toolsthat are used by the actors to provide the services of a Domain.
Examples are communication systems, radar equipment and keys.

HMSC start

The graph describing the composition of MSCs within an HMSC isinterpreted in an
operational way as follows. Execution starts at the <hmsc start symbol>. Next, it con-
tinues with a node that follows one of the outgoing edges of this symbol.

| dentification

identifier

21-28

is an unambiguous designation of a Configuration Item that is part of a system or
product.

The identification can consist of a name, type, revison number and variant.
The identification can not be changed during the life-span of the item.
Physical items will bear the identification.

Anidentifier containsan optional qualifier in order to denote the scope unit inwhich the
entity is defined:

<identifier>::= [<qualifier>] <name>

where qualifier defines the path:

<gualifier>::= <path-item>{‘/* <path-item>;* |
‘<<’ <path-item>{"/* <path-item>* *>>

The qualifier gives the path from either the system level, or from the innermost level
from where the name is unique, to the defining scope unit.

Each path-item have this form:

<path-item>::= <scope-unit-kind>{ <name> | <quoted-operator>}
where scope-unit-kind is one of

* package,

* systemtype,

* system,

* block,

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

» block type,
 substructure,
* process,

* processtype,
* service,

e sarvicetype,

(more)

* procedure,
e signd,

* type, or
 operator.

A definition in an inner scope unit overrides definitions with the same name in outer
scope units. Qualifiers may be used in order to identify overridden entities.

Qualifiers may be omitted if not needed in order to identify the right entity in the right
scope unit.

States, connectors and macros cannot be qualified. States and connectors are not visible
outside their defining scope unit, except in a subtype definition.

Illustrative part of a description

Anillustrative part of adomain object or property model descriptionisapart that is not
automatically transformed into a corresponding design.

| mplementation

I mplementations are detailed and precise descriptions of the hardware and the software
that a concrete system ismade of. They define the physical construction of systemsina
system family. The software part will be expressed in programming languages such as
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagrams or VHDL.

| mperative

An imperative description isadescription of the sequence of actionsin aprocedura and
command-like manner.

From Webster:

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-29

TIMe

imperative: 1. Expressing acommand or plea; peremptory. 2. Having the power or
authority to command or control.

See also declarative.

| ncomplete messages (lost and found)

21-30

The loss of amessage, i.e. the case where a message is sent but not consumed, may be
indicated by ablack hole.

Symmetrically, a spontaneously found message, i.e. a message which appears from
nowhere, can be defined by awhite hole.

<incomplete message area> ::=

{ <lost message area> | <found message area> }

{ isfollowed by <general order area> }*

{ isattached to <general order area> }*

<lost message area> ::=

<lost message symbol> is associated with <msg identification>
[isassociated with { <instance name> | <gate name>} |

is attached to <message start area>

NOTE: The <lost message symbol> describes the event of the output side, i.e. the solid
line starts on the <message start area> where the event occurs. The optional intended tar-
get of the message can be given by an identifier associated with the symbol. The target
identification iswritten closeto the black circle, whilethe messageidentificationiswrit-
ten close to the arrow.

<found message area> ::=

<found message symbol> is associated with <msg identification>
[isassociated with { <instance name> | <gate name>} |

Is attached to <message end area>

NOTE: The <found message symbol> describes the event of the input side (the arrow-
head) which should be on a<message end area>. Theinstance or gate which supposedly
wasthe origin of the messageisindicated by the optional identification given by the text
associated with the circle of the symbol. The message identification should be written
close to the arrow part.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

input

An input allows the consumption of the specified input signal instance. The consump-
tion of the input signal makes the information conveyed by the signal available to the
process. The variables associated with theinput are assigned the values conveyed by the
consumed signal.

Thevalueswill be assigned to the variablesfrom |eft to right. If thereis no variabl e asso-
ciated with the input for a sort specified in the signal, the value of this sort is discarded.
If thereis no value associated with a sort specified in the signal, the corresponding vari-
able becomes “ undefined”.

The sender expression of the consuming processis given the Pld value of the originating
process, carried by the signal instance.

Z.100

| nput event

An input event designates the consumption of a message. Normally thereisacorre-
sponding output event. The input event follows after the corresponding output event in
time.

<message in area> ::= <message in symbol>
isattached to <instance axis symbol>

Is attached to <message symbol>
<message in symbol> ::= <void symbol>

The <void symbol> isageometric point without patial extension. The <messagein sym-
bol> is actually only a point which is on the instance axis. The end of the message
symbol which isthe arrow head is also pointing on this point on the instance axis.

| nstance

A Message Sequence Chart iscomposed of interacting instances of entities. Aninstance
of an entity isan object which hasthe properties of thisentity. Related to SDL, an entity
may be an SDL-process, block or service. Within the instance heading the entity name,
e.g. process name, may be specified in addition to the instance name.

| nstance

An instance is an interacting entity of an MSC. Events are on instances and they are
ordered according to their position on the instance from top to bottom. An instance has
an instance head and an instance end or a stop. Between these there is the instance axis
which may be either asingle vertical line or a column defined by two vertical lines.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-31

TIMe

<instance area> ::=

<instance head area> is followed by <instance body area>
<instance head area> ::= <instance head symbol>
isassociated with <instance heading>

[isattached to <createline symbol>]

<instance heading> ::=

<instance name> [[:]<instance kind>][decomposition>]
<instance body area> ::= <instance axis symbol>
isfollowed by { <instance end symbol>|<stop symbol>}

| nstance descriptions

An instance description describes a system instance.
In TIMe, system instance descriptions are organised in:

» Instance modelsthat formally define the system instance, usually by configuration of
some family;

* Implementations which are the instance specific implementations, such as configura-
tion files;

» Aukxiliary descriptionsthat provide supplementary documentation, for instance atest
suite.

| nterface Role

isaprojection of an object behavior onto an interface (a communication line).
From Webster:

Interface: 1. A surface forming a common boundary between adjacent regions. 2. a. A
point at which independent systems or diverse groups interact.

Language

21-32

By asystems engineering language we mean aformal descriptiontechnique (FDT). This
means that not only the a phabet (notation) must be defined, but that both syntax (gram-
mer) and semantics (meaning) of the language must be defined.

Examples of systems engineering languages are SDL, MSC, LOTOS, ESTELLE.
Contrast to Notation.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

Liveness Property

Informally aliveness property expresses that something (good) will eventually happen.

local variables

Local variables of a procedure become parts of the procedure instance when the proce-
dureiscalled, and they cease to exist when the procedure returns.

Thelocal variables will get default initial valuesif nothing elseis specified.
Z.100 (variable definition)

Localisation (nesting)

Some phenomena and concepts are only meaningful within the context of aspecific phe-
nomenon or concept. Localisation of definitions supports this and gives rise to nesting

of definitions. Scope rules and binding rules determine how nested definitions may use
entities defined in enclosing definitions.

Loop (HMSC)

A loop in HM SC occurswhen branchesand nodesform acycle. Thereare no restrictions
on how such cycles should appear.

Message

A message within an M SC represents exchange of information between two instances
or one instance and the environment.

A message exchanged between two instances can be split into two events: the message
input and the message output. M essages coming from the environment are represented
by a message input, messages sent to the environment by a message output. To a mes-
sage, parameters may be assigned between parentheses. The declaration of the
parameter list is optional for the message input.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21 - 33

Method

TIMe

A method is systematic way of producing some result.

In systems engineering a method provides guidelines for structuring and using descrip-
tions in given notations.

Contrast to Methodology.

Methodol ogy

A methodology isacollection of methods and guidelines for when and how to use them
to produce aresult.

In systems engineering most results take the form of descriptions expressed using some
notation or language. A systems engineering methodology therefore prescribes a set of
descriptions and associated methods.

A systems engineering methodol ogy is used by an organisation in an attempt to achieve
right quality, short lead times and low cost.

Model checking

Given amodel which is (typically described by automata), decide whether a given log-
ical statement (typically describe in some temporal logic) isvalid.

In our methodology we use model checking to determine the consistency between an
SDL model and an MSC temporal specification.

MSC diagram

21-34

A Message Sequence Chart, which is normally abbreviated to M SC, describes the mes-
sage flow between instances. One Message Sequence Chart describes a partial
behaviour of a system.

An MSC describes the communication between a number of system components, and
between these components and the rest of the world, called environment. For each sys-
tem component covered by an MSC there is an instance axis. The communication
between system componentsis performed by means of messages. The sending and con-
sumption of messages are two asynchronous events. It is assumed that the environment
of an MSC is capable of receiving and sending messages from and to the Message
Seguence Chart; no ordering of message events within the environment is assumed.

<msc diagram> ::=
<msc symbol> contains
{ <msc heading> { <msc body area> | <mscexpr area>} }

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

MSC document

A Message Sequence Chart document is a collection of Message Sequence Charts, and
sub Message Sequence Charts, optionally referring to a corresponding SDL -document.

MSC heading

The Message Sequence Chart heading consists of the Message Sequence Chart name
and (optionally in thetextual form) alist of theinstances being contained in the Message
Sequence Chart body.

MSC heading

The Message Sequence Chart heading consists of the Message Sequence Chart name.
<msc heading> ::=
MSC <msc name>

MSC reference

MSC references are used to refer to other MSCs of the M SC document. The MSC ref-
erences are objects of the type given by the referenced MSC.

MSC references may not only refer to asingle MSC, but also to M SC reference expres-
sions. MSC reference expressions are textual M SC expressions constructed from the
operators alt, par, seq, loop, opt, exc and subst, and M SC references.

The actual gates of the M SC reference may connect to corresponding constructs in the
enclosing MSC. By corresponding constructs we mean that an actual message gate may
connect to another actual message gate or to an instance or to a message gate definition
of the enclosing M SC. Furthermore an actual order gate may connect to another actual
order gate, or an orderable event or an order gate definition.

<msc reference area> ::= <msc reference symbol >
contains{ <msc ref expr> [<actual gate area>* | } set
Isattached to{ <instance axis symbol>* } set
isattached to { <actual gate area>* } set

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-35

MTTF

TIMe

MTTF isan acronym for Mean Time To Failure. The definition is as follows:

Toa execution tme

MTTF = SUmber of failures observed

Total execution timeisthe execution time accumulated over al installationsthat run the
same product. Thus, if one site has run the product for two months on two computers
and another site has run the product for one month on one computer, the total execution
timeis2x 2+ 1 x 1 =5 months of execution time.

A simple example will show how it works:

MTTF = 40T—§nms = 4 months

One should avoid the use of MTTF as areliability measureif the failure rate has varied
much over the total execution time.

Non-functional property

Notation

A non-functional property is a property which is not measurable in an abstract system.

Non-functional propertiescan berelated to the handling of abstract systems, for instance
that they are flexible. More often they are related to the concrete system, and express
physical properties such as size, weight and temperature.

Performance, real-time responses and reliability are considered to be non-functional
propertiesin TIMe, since they cannot be measured in the abstract systems.

A systems engineering notation consists of symbols (an aphabet) that can be used to
model or describe a concept or entity.

A notation islessformal than aLanguage, in that the syntax and/or the semantics are not
formally defined.

Examples of notationsare OMT, UML, ROOM, SA/SD, SADT.

Object classes with attributes, relations and connections

21-36

This aspect of object modelling has to do with identification of classes without consid-
ering how many instances there will be in a given system and also without considering
how they are used in the design of specific systems or other instances.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

Objects and Object Sets

While traditional notations only represent set of objects through cardinalities of rela-
tions, an object/classin UML may be defined to consist of sets of objects independent
of relations, see also aggregation.

[[<object (set) name> [<range>] :]<class identifier>}

An object symbol may represent asingle object or it may represent a set of objects. The
text inside an object symbol consists of two parts separated by a colon. Thefirst part,
which is optional, contains alocal object name followed by the number of objects. The
second part contains the class name.

The number of objectsin aset is specified by alow and ahigh limit placed inside paren-
theses (range). For example, (1,100) which means at least one and a maximum of 100
or (3,3) which means exactly 3. The special symbols* and + represent zero or more and
one or more, respectively. If no range is specified, then a single object is specified.

(min, max) at least min, at most max

(min,) at least min, no upper bound

(+) at least one, no upper bound

(*) any number, zero or more, no upper bound

Object model

An object model defines static object structuresin terms of objects, classes (types), asso-
ciations and connections, and dynamic object behaviour in terms of signals and state
transitions.

These are models that describe how a system or component is composed from objects,
connections and relationships, and how each object behaves.

The term object model is abit misleading, as object models normally describe general
types (sometimes called classes) and object setsrather than individual objects. A typeis
aconcept. According to the classical notion of a concept, it is characterised by:

» extension, the collection of phenomena that the concept covers;

* intention, a collection of propertiesthat in some way characterise the phenomenain
the extension of the concept;

» designation, the collection of names by which the concept is known.

Representing concepts by types and phenomena by instances of these typesfollowsthis
pattern: the instances bel ong to the extension, the type definition givesthe intention and
the type name represents the designation. The term object model aswe useitin TIMe
covers objects aswell as types.

Object modelsare constructivein the sensethat they describe how an entity iscomposed
from parts, be it abstract or concrete.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-37

TIMe

In TIMe, every object model should have associated property models.

Operations

Operator

output

21-38

Operations are specified by a name and an optiona signature:

<operations>::= <operation>*
<operation>::= <operation name>[: <signature>|

The alt operator defines alternative executions of M SC sections. This meansthat if sev-
eral M SC sections are meant to be aternatives only one of them will be executed. In the
case where aternative M SC sections have common preambl e the choice of which MSC
section will be executed is performed after the execution of the common preamble.

The par operator defines the parallel execution of MSC sections. This means that all
eventswithin the parallel MSC sectionswill be executed, but the only restriction isthat
the event order within each section will be preserved.

Theloop construct can have several forms. The most basic formis”loop <n,m>" where
n and m are natural numbers. This means that the operand may be executed at least n
times and at most m times. The naturals may be replaced by the keyword inf, like "loop
<n,inf>". This means that the loop will be executed at |east n times. If the second oper-
and is omitted like in "loop <n>" it isinterpreted as "loop <n,n>". Thus "loop <inf>"
means an infinite loop. If the loop bounds are omitted like in "loop", it will interpreted
as"loop <1,inf>". If the first operand is greater than the second one, the loop will be
executed O times.

The opt operator is the same as an alternative where the second operand is the empty
MSC.

The exc operator isacompact way to describe exceptional casesin an MSC. The mean-
ing of the operator isthat either the eventsinside the <exc inline expression symbol> are
executed and then the MSC is finished or the events following the <exc inline expres-
sion symbol> are executed. The exc operator can thus be viewed as an alternative where
the second operand is the entire rest of the MSC.

An output generates asignal of the specified signal type, containing the specified actual
parameters, and send this signal instance to the specified destination.

Stating a <process identifier> in <destination> indicates the destination as any existing
instance of the set of process instances indicated by <process identifier>. If there exist
no instances, the signal is discarded.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

If no signal route identifier is specified and no destination is specified, any process, for
which there exists a communication path, may receive the signal.

If an expressioninthelist of actual parametersisomitted, no valueis conveyed with the
corresponding place of the signal instance, i.e. the corresponding place is *undefined”.

The Pid value of the originating processis also conveyed by the signal instance.
Z.100

Output event

package

An output event designates the output of a message. Normally thereis a corresponding
input event. The output event must come before the corresponding input event in time.

<message out area> ::= <message out symbol>
is attached to <instance axis symbol>

Is attached to <message symbol>

<message out symbol> ::= <void symbol>

The <void symbol> is a geometric point without patial extension. The <message out
symbol> is actually only a point which is on the instance axis. The end of the message
symbol which has no arrow head is aso on this point on the instance axis.

A packageisacollection of types. A packageisdefined by apackage diagram. Packages
can be provided (that is defined) together with a system diagram (or together with
another package diagram) or they can be used by means package identifiers.

A package may contain definitions of types, data generators, signal lists, remote speci-
fications and synonyms. Definitions within a package are made visible to a system
definition or other package definitions by a package-reference-clause (use clause). All
(or selected) definitions of packages provided in thisway will be visible in the system
definition (or in the new package).

A package diagram has this form:

PACKAGE <package-name>

<type definitions>

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-39

- TIMe

A package can be used either either in the definition of a new
package, or as here, a system. Thisis done by the use clause.

USE <package identifier>;

SYSTEM <system name>

Z.100

package reference clause

A package reference clause specifies that a system diagram or package diagram use the
definitions of other packages. The names following the “/” after the package name
denotes the subset of the definitions that are used.

Z.100

page numbering

A diagram may be split into a number of pages. In that case each page is numbered in
the rightmost upper corner of the frame symbol. The page numbering consists of the

page number followed by (an optional) total number of pages enclosed by (), e.g. 1 (4),
2(4),3(4),4(4).

Passive object

The purpose of passive objectsis to represent something we need to know about.
Descriptions of passive objects will abstract from physical details of the entities they
represent and model only what we need to know about them. The behaviour of passive
objectswill normally be very different from the actual behaviour of the objectsthey rep-
resent. A passive object representing a person has a simple behaviour concerned with
updating of attributes and relationships (data), while the real person itself has an
extremely complex behaviour.

Physical node

A physical nodeisadistinct physical entity, such asacomputer, that implements one or
more abstract system objects.

21-40 Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

A physical node operates concurrently with other physical nodes.

Physical nodes may be aggregated and decomposed, but always in such away that
abstract objects are contained within physical nodes.

procedure

Procedures define patterns of behaviour that processes/services may execute at several
placesor severa timesduring their life-time. The behaviour of a procedureisdefined in
the same way as for processes (that is by means of states and transitions), a procedure
may have (local) variables, and in addition it may have IN, OUT, IN/OUT parameters.

Procedures are defined by procedure diagrams.
Z.100

procedure call

A procedure call transfersthe interpretation to the procedure definition referenced in the
call, and that procedure graph is interpreted.

The interpretation of the transition containing the procedure call continues when the
interpretation of the called procedure is finished.

The actual parameter expressions are interpreted in the order given.

If an <expression> in <actual parameters> is omitted, the corresponding formal param-
eter has no value associated, i.e. it is*undefined”.

Z.100

procedure heading

The procedure-heading of a procedure diagram has this format:
<procedure heading> ::=

[<virtuality>] [<export-as> | procedur e <procedure-name>
[<virtuality-constraint> | [<specialisation>]

[<procedure-formal-parameters> |

[<result>]

<procedure-formal -parameters> defines the formal parameters of the procedure and
have the format:

<procedure-formal-parameters> ::=
fpar [in"/ out | in] <typed-parameters>
{,[in/out|in] <typed-parameters> }*

where <typed-parameters> have the format

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-41

TIMe

<typed-parameters> ::
<variable-name> {*,' <variable-name>}* <data-type-identifier>

<typed-parameters> isalist of parameter names followed by a data type name.
<result> has the format:
<result> ::= returns|[<variable-name> | <data-type-identifier>

where <data-type-identifier> givesthe data type of the value returned by the procedure.
The optional <variable-name> can be used to name the result. The result can either be
stated as an expression next to the return symbol, or as an assignment in atask to the
variable introduced in result.

procedure reference

A procedure reference specifies that there is aprocedurein the enclosing entity and that
the properties of thisprocedure are defined in a separate (referenced) procedure diagram
outside this diagram.

Z.100

procedure start

Process

process

21-42

Z.100

According to Collins (1986) a processis:
1. aseries of actions which produce a change or development;
2. amethod of doing or producing something.

InTIMeaprocessisan ordered series of actionsthat produce change or development of
descriptions and systems. The particular states of descriptions and systemsthat are pro-
duces are called milestones, and the periods of time when they are developed are called
phases. Hence aprocessis an ordered series of actions and milestones related to phases.

A process instance is part of aprocess set, which in turnis part of a block.

The properties of aprocessis either defined by a process diagram or it isdefined by a
process type diagram.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

Each process consists of the input port and an extended finite state machine (EFSM)
with asequential behaviour defined by aprocess graph, whichisasort of statetransition
diagram. Thefinite state machine fetches signalsfrom the input port in strict FIFO order
except when the order is modified by the save operator (see below). For each signal it
performs one transition which will take a short but undefined time.

Signals are messages that the finite state machine consumes. Each signal hasa signal
type identification which the FSM uses to select the next transition action. In addition,
the signal carries the sender identity and possibly some additional data.

SDL Process

signal

route input port
signal signal EFSM
/

An SDL process with signal instances in the input port

process diagram

A process diagram defines the properties of a process set, where each of the process
instances in the set have the specified properties.

The behaviour of processes may be defined either by means of a procedure graph (states
and transitions) or by means of a substructure of services connected by signal routes.
The behaviour of each of the servicesis defined by means of states and transitions.

Z.100

process (reference)

A process reference specifies that there is a process in the enclosing block and that the
properties of this process are defined in aseparate (referenced) process diagram outside
this diagram.

Z.100

process set

A process set defines a set of processes according to a process type.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-43

TIMe

Just like we have the distinction between block reference, block type and block set
according to type, we have the distinction between process reference, process type and
process set according to atype. Our recommendation is that process sets should be
described with reference to a process type.

Process reference:
Process set without Validation(0,)
any associated type.

Thisisboth aspecification of aprocess set as part of the enclosing block and areference
to the corresponding process diagram, which defines the properties of the processesin
the set.

Process set according
to a process type Valid(0,):
(validation) Validation

The numbers in parentheses after the process set name specify the number of instances
in the process set. As defined in above, there areinitially no processes, and thereisno
limit on the number of instances that may be created.

A process set according to atype requiresthat the corresponding processtypeisdefined:

Z.100

process type

A processtype definesthe common properties of acategory of processinstances. A pro-
cess type is defined by a process type diagram.

process type diagram

21-44

A process type diagram defines the properties of a process type.
Z.100

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

process (type) heading

The heading of process diagrams (defining a process set directly without any process
type) is a <process heading>, defining the name of the process set and the initial/maxi-
mum number of instancesin the set.

The heading of process type diagrams is a <process type heading>, defining the name
of the processtype, itsvirtuality (and constraint), itsformal context parametersand if it
inherits from another process type.

Formal parameters are variables of the process instances. They get values as part of the
creation of the process instance.

When asystemiscreated, theinitial processes are created in arbitrary order. Theformal
parameters of these initial processes have no associated values; i.e. they are undefined.

If theinitia number is omitted, then the (default) valueis 1. If the maximum number is
omitted, then there is no limit on the number of instances.

Z.100

Proof

A proof is a systematic sequence of statements aimed at establishing the truth of some
given sentence. A proof is often supported by mathematical notation, and based upon
formal inference rules. Proofs may also be performed automatically by a computer pro-
gram, or semi-automatically by the use of proof assistants.

Property

A property isaquality or characteristic attribute, such as the strength or density of a
material.

In TIMe we speak of functional/abstract properties and non-functional/concrete proper-
ties associated with objects.

Properties are not components that can be used to build systems. They are measureswe
useto characterise and eval uate systems by. L et uscompareto abrick: the brick itself is
an object we can use to build something with (e.g. afireplace), its physical measuresare
propertieswe may use to select the particular type of brick and to plan the fireplace, but
not to build with. Thus, properties are not components to be used in constructions, but

means to understand, select and plan constructions.

Property

acharacteristic trait or quality
(American Heritage Dictionary)

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21 -45

TIMe

Property model

A property model isamodel that states properties of a system, acomponent or asingle
object without prescribing a particular construction. Property models are not construc-
tive, but used to characterise an entity from the outside. There are many kinds of
properties: behaviour properties, performance properties, maintenance properties, etc.
Thisisthe perspective preferred by users and sales persons. It is also the main perspec-
tive in specifications.

In TIMe properties will be expressed mainly using text and M SCs.

Property oriented devel opment

Property oriented development is characterized by an integration of:

* better product planning through focus on the early stages of system development, in
particular domain analysis and requirements specification;

» emphasis on system families, evolution and reuse;
» formal expressions of required and provided properties,

« quality-by-construction through integration of methods for verification, validation
and design synthesis.

Property oriented devel opment isat ahigher process maturity level than Design oriented
development.

redefined process type

isaredefinition of the corresponding virtual processtype in the super block type, and it
isvirtual, so that it can be redefined in further subtypes of this block type.

A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint.

Z.100 (virtual types)

Reference expression

21-46

M SC references may not only refer to asingle MSC, but also to MSC reference expres-
sions. MSC reference expressions are textual M SC expressions constructed from the
operators alt, par, seq, loop, opt, exc and subst, and MSC references.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Thealt, par, loop, opt and exc operators are described in definition of operator. The seq
operator denotes the weak sequencing operation where only events on the sameinstance
are ordered.

The subst operation is a substitution of concepts inside the referenced MSC. Message
names are substituted by message names, instance names by instance names and MSC
names by MSC names.

Real aggregation

Real aggregation is supported by UML.
Real aggregation implies:
« that the part object is only part of one object, and

« that possible relations specified with the part object (class) as endpoint only hold for
the part object and not for all objects of this class.

UML adorns the association with afilled diamond and calls it composition.

Refinement

By refinement we mean that the refinement is a system where all behaviors are al'so
behaviors of the refined, but not necessarily conversely.

Relation aggregation

Relations

Thisisthe form of aggregation where the part objects are just related to the composite
object with a special relation, but still just arelation. This was the only form of aggre-
gation supported by OMT.

UML adorns the association with a hollow diamond and calls it aggregation.

A relation represents application specific relationships between objects of the involved
classes. Instances of arelation are called links and consist of tuples of object references.
Structural “relations’ such as subclass-of and part-of are not regarded as relations, but
as separate constructs.

Relations can be used either as the basis for automatic generation of the corresponding
part of functional design (e.g. adatabase part of the design) - that is as constructive parts
of the conceptual model, or asillustrations of properties that will be “implemented” in
some way in the design.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21 - 47

- TIMe

Relations

The basic (underlying/chosen) notation will most certainly have support for relations
with classes as endpoints.

With UML as basis we have the following cases of relations:

Name Relation, maximum and
minimum cardinality 1 in
both directions.

Relation, maximum and

Name ini dinality card

card card minimum cardinafity
in both directions.

Cardinality (also called multiplicity) isatext string comprising a comma-separated
sequence of integer intervalsin the format:

min .. max at least min, at most max
min..* at least min, no upper bound
* any number, zero or more, no upper bound

When defining an object/class by means of aggregation, we may in some case need to
expressthat there arerelationsto the objects/object sets comprising the aggregation. The
same symbols as for relations with classes as endpoints are used, but the semanticsis
different: the set denoted by the relation is a subset of the related object (set). See also
relation aggregation and real aggregation.

Reliability
According to |EEE, reliability for software is defined as follows:

The probability that the software will not cause the failure of asystem for a specified
time under specified conditions. The probability isafunction of the inputsto and the
use of the system as well as a function of the existence of faultsin the software.

There exists, however, an alternative version which is also used:

The ability of aprogram to perform arequired function under stated conditionsfor a
stated period of time.

remote procedures

The remote procedure mechanism consists of four interdependent language constructs:

21-48 Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

1. The exporting of a procedure. A procedure which is made visible by other processes
is marked with the keyword exported preceding the procedure heading, e.g.
“exported procedure Validate ...” from a process within the CentralUnit. The
exporting process can control in which statesit will accept the remote request. It may
also specify to save the request to other states. The controlling of the acceptanceis
done by using input and save symbols with the remote procedure name preceded by
the keyword procedure.

2. Theimporting of a procedure. When a process, service or procedure wants to import
aremote procedure, it must specify the signature of this procedure in an “imported
procedure specification” in atext area. The specification in our case would read:
“imported procedure Validate; returnsinteger;” where the integer returned would
give the result of the validation.

3. Thespecification of remote procedure. In SDL all namesmust be defined in aspecific
scope. Thus, the names of remote procedures must be defined in the context in which
the actual definition of the procedure and the calls will be contained. In our case the
definition of the procedure Validate is within the CentralUnit and the call isin Con-
troller of the AccessPoint. The scope unit enclosing all these is the system itself.
Therewe will find atext areawith the following text: “remote procedure Validate;
returnsinteger;”.

4. The calling of a remote procedure. The calling of the remote procedure isindistin-
guishable from local procedure calls unlessthe caller explicitly states which process
it will request the procedure executed by. This can be done by ato-clause with aPld
following the procedure name of the call.

Remote procedures may be value returning (as in our example above) and they may be
virtual. Z.100

Restrictive condition

Four static restrictions are related to conditions in HM SCs:

*If an <msc reference> isimmediately preceded by a<condition symbol>, with an asso-
ciated set of <condition name>s, then this set must be a subset of the set of initial
conditions of the <msc ref expression> associated with the <msc reference>.

«If an <msc reference> isimmediately followed by a<condition symbol>, with an asso-
ciated set of <condition name>s, then this set must be a subset of the set of final
conditions of the <msc ref expression> associated with the <msc reference>.

*If an <par expr area> isimmediately preceded by a <condition symbol>, with an asso-
ciated set of <condition name>s, then this set must be a subset of the set of initial
conditions of the <par expr area>.

oIf an <par expr area> isimmediately followed by a <condition symbol>, with an asso-
ciated set of <condition name>s, then this set must be a subset of the set of final
conditions of the <par expr area>.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21 -49

TIMe

return
A return represents the the completion of acall of a procedure.
A returnisinterpreted in the following way:
a)All variables created by the interpretation of the procedure start will cease to exist.
b)The interpretation of the procedure-graph is completed and the procedure instance
ceasesto exist.
c)Hereafter the calling process, service (or procedure) interpretation continues at the
node following the call.
Z.100

Revision
iIsaVersion of acomponent that is derived from an earlier version, and that is designed
toreplacetheearlier version. The difference between two succeeding revisionisusually
a“small” improvement (error correction or enhancement in functionality). The latest
revision is the version one intends should be used (“latest and greatest”).

Role
Isabehavioral pattern which describes how one acting object performs a set of related
services.
From Webster:
e la acharacter assigned or assumed
» 1b: apart played by an actor or singer
e 2: Function
Roles are used to describe properties, and are related to object designs by projection.
Roles are used to link properties and objects. Projections are used for synthesis of new
objects and for documenting existing objects.

Safety Property
Informally a safety property expresses that something (bad) will never happen.

21-50 Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

save

A save specifiesthat the signalsin the save symbol are retained in the input port in the
order of their arrival.

The effect of the saveisvalid only for the state to which the save is attached. In the fol-
lowing state, signal instances that have been “saved” are treated as normal signal
instances.

Asterisk save impliesthat all signals are retained in the input port.
Z.100

scope units

Service

The following kinds of definitions form scope units:
e package

e systemtype

e system

* block

* block type

* block substructure
» channel substructure
* process

* processtype

* service

* servicetype

* procedure

e signd

e operator, and

. type

isaunit of behavior which characterizes what a system (or component) providesfor the
user. A serviceisnormally given aname. Services may be interleaved in time.

From Webster:

4b: useful labor that does not produce a tangible commaodity - usu. used in pl. { charge
for professional ~s}

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-51

- TIMe

service
A serviceisastate machine being part of aprocessinstance, and cannot be addressed as
aseparate objects. It sharestheinput port and the expressions self, parent, offspring and
sender of the process instance.
Only one service at atime is executing atransition. Services alternate based on signals
in the input port of the process.
Z.100

service (reference)

A service symbol specificiesthat a serviceis part of the containing process (type), and
that the definition of the service can be found in a separate service diagram.

Process behaviour by means of servicesis an alternative to process behaviour by means
of aprocess graph through a set of services. Each service may cover apartial behaviour
of the process.

Z.100

service (type) heading
The heading of service diagramsis:
<service-heading> ::= service [<qualifier>] <service-name>
while service type diagrams have the following heading:

<service-type-heading>::=

[<virtuality>]

servicetype [<qualifier>] <service-type-name>
[<formal-context-parameters>]
[<virtuality-constraint>] [<specialisation>]

signal definition

A signal definition defines a set of types of signals. Signal definitions are part of text
symbols.

21-52 Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

Signals may be defined in system and block diagrams, and these may then be used for

communication between the blocks of the system or the processes of the block. Signals
may also be defined in process (type) diagrams, but then they can only be used for com-
muni cation between processes of the same set. Often signal definitions are collected in
packages.

Z.100

signal list
Associated with each arrowhead of channels and signal routes or signal lists, that spec-
ifies the allowed signalsin that direction.
Signallists are defined in text symbols.
Z.100

signal route

A signal route represents a communication path between process sets and between pro-
cess sets and the environment of the enclosing block/block type.

Z.100

Software node

A software node is a distinct software entity, such as a software process (a concurrent
thread), that implements one or more abstract system objects.

A software node will often operate concurrently with other software nodes, but not
aways.

Software nodes may be aggregated and decomposed, but always so that abstract objects
are contained within software nodes.

specialisation
A type may be defined as a specialisation of another type. Thisis done by the following
construct:
<specialisation>::= inherits <type-expression> [adding]

Specialisation applies to system, block, process, service, datatypes, and to signals and
procedures, and the same semantics apply in all cases:

» All definitions of the supertype are inherited:

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21 -53

TIMe

- Theformal context parameters of a subtype are the unbound, formal context param-
eters of the supertype definition followed by the formal context parameters added in
the <specialisation>.

- Theformal parameters of a specialised process type or procedure are the \formal
parameters of the process supertype or procedure followed by the\formal parameters
added in the <specialisation>.

- Thecomplete valid input signal set of a specialised type isthe union of the complete
valid input signal set of the<specialisation> and the completevalid input signal set of
the supertype.

- A specidised signal definition may add (append) data type identifiers to the \data
type list of the supertype.

- A specialised partial type definition may add propertiesin termsof operators, literals,
axioms, operators and default assignment.

» Definitions and transitions (where appropriate) may be added in subtypes.

« Virtual \transitions and types in the supertype may be redefined in the subtype, but
for virtual types only to subtypes of their constraint.

A virtual type or procedureisdefined by prefixing the keyword of the diagram (e.g. pr o-
cess or procedure) by one of the keywords virtual, redefined and finalized.

(more)

virtual isused when atypeisintroduced asavirtua type. A virtual type must be atype
defined locally to another type; the implication isthat it can be redefined in types that
inherit from the enclosing type.r edefined is used when the redefinition of avirtua type
isstill virtual. finalized is used when the redefinition is not virtual.

Z.100

Specification

A specification covers those aspects of amodel that are relevant for its external repre-
sentation and use. The context part is often sufficient as a specification, but if parts of
the content areimportant it may beincluded in the specification. Specifications are asso-
ciated with the abstractions they belong to.

Stake holder

21-54

A stake holder is someone or something holding an interest in something.

In TIMe, astake holder is any person, institution or system with direct or indirect inter-
est in the Domain, a Family or a System instance.

Typical examples are companies, users, operators, owners, and systemsin the
environment.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

Start

Thereis only one start symbol for a process. The transition from the start takes place
when the processis generated. A process may be generated either at system start-up or
as aresult of a create request from another process.

Z.100

State

A state represents aparticular condition in which aprocess may consume asignal result-
inginatransition. If the state has neither spontaneoustransitions nor continuous signals,
and there are no signal instances in the input port, otherwise than those mentioned in a
save, then the process waits in the state until a signal instance is received.

Z.100

State

A stateisawell defined situation which a system or component of a system can bein.
A state can be defined by a unique name or the values of aset of variables, or through a
set of constraints.

A systemstate isnormally used for the state of awhole system. A process state or basic
state refers to a state in the finite set of defined, named statesin an SDL process (or
equivalent). A complete state of an SDL processwill includevaluesof al local variables
and the value of the input port and save queue.

Status

isan Attribute of a Configuration Item that qualifiesit, e.g. in terms of formal approval
or what quality criteriait fulfils.

As apposed to the Identification of the item, the status will change.

Subject entities

These are entities that are subject to manipulation, representation or control in the
Domain. They may be materialsin the case of a material transformation domain, e.g.
moulding, or they may be entities represented in an information system, e.g. flights and
seats, or they may be controlled machinery, e.g. a paper mill.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-55

TIMe

SubMSC (MSC 92)

Synthesis

System

21 - 56

An instance of an MSC may be decomposed in form of a sub Message Sequence Chart
(sub MSC), thus allowing a top-down specification.

A sub M SC essentially hasastructure analogousto an MSC. It isdistinguished from the
MSC by the keyword submsc. Characteristic for asub MSC isitsrelation to a decom-
posed instance containing the keyword decomposed and having the same name as the
sub MSC. Therelation is provided by the messages connected to the exterior of the sub
M SC and the corresponding messages sent and consumed by the decomposed instance.

[In MSC-96 there will be an extension to the decomposition phrase such that any MSC
can be specified as the sub MSC.

In TIMe, synthesisis an activity that produces a design from a specification.
Two basic techniques are used to synthesize adesign:

1. Transformation. A source description istransformed to atarget description according
to well defined rules. One exampleisto generate code from an SDL design.

2. Composition. The content is decomposed into parts (top down) and/or composed
from parts (bottom up) using a mixture of manual and automated techniques. TIMe
seeks to reuse existing types as much as possible, and to make new types that might
be needed reusable. Thus, design with reuse and design for reuseis part of TIMe.
Design with reuse involves:

- searching for existing types having some desired properties,
- adapting the properties to fit the particular application.

A systemisapart of theworld that a person or group of persons during sometime inter-
val and for some purpose choose to regard asawhole. A system consists of interrelated
components, each component being characterised by properties that are selected as
being relevant to the purpose.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

System family

The System family contains generalised system and component concepts that can be
adapted (configurated) and instantiated to fit into a suitable range of user environments.
They represent the product base from which acompany can make a business out of pro-
ducing and selling system instances.

Theideaisto focus development and maintenance effort mainly on the familiesin order
to:

1. reduce the cost and time needed to produce each particular instance
2. reduce the cost and time needed to maintain and evolve the product base.

InTIMe, system familiesareformally defined as(collectionsof) types or classes. Where
practical, system types/classes will be defined from which complete system instances
may be generated. In addition the system family contains the component types/classes
that are used to compose the system types/classes.

System family statement

The system family statement isaconcise description of the system family with emphasis
on specifications, i.e. the external properties.

System instance

A system instanceis a (real) system which can perfom behaviour and provide services.

The system instance area of concern contains system instances produced from system
families.

system (type) heading

The heading of system diagrams, that is a system-heading is as follows:
<system-heading> ::= system <system-name>
while system type diagrams have system-type-headings:

<gystem-type-heading>::=

system type [<qualifier>] <system-type-name>
[<formal-context-parameters>|
[<specialisation>]

Asindicated in the syntax rule above, asystem type can have formal context parameters
and it can be a specialisation (of amore general system type).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-57

TIMe

task
A task may contain a sequence of <assignment statement>s or <informal text>. The
<assignment statement>s or <informal text>s are executed in the specified order.
A task is part of atransition.
Z.100
text symbol

Text symbols are used in order to have textual specifications as part of diagrams, espe-
cially for specification of signal types, datatypes and variables.

Thereisno limit to the number of text symbols that may occur in adiagram. Text sym-
bols are not connected to other symbols by flow lines.

The text symbol is also used for the graphical representation of a use clause, see
package.

Z.100

Timeline (instance axis)

Timer

timer

21-58

No global time axis is assumed for one Message Sequence Chart. Along each instance
axis the timeis running from top to bottom, however, we do not assume a proper time
scale. If no coregionisintroduced atotal time ordering of eventsis assumed along each
instance axis.

In MSCs either the setting of atimer and a subsequent timeout due to timer expiration
or the setting of atimer and a subsequent timer reset (time supervision) may be
specified.

The notion of timers provides a mechanism for specifying time-related matters. Timers
arejust like alarm clocks. The process waiting for atimer is passively waiting since the
process needs not sample them. Timers will issue time-out signals when their timeis
reached. There may well be several different timers active at the sametime. Activetim-
ers do not affect the behaviour of the process until the timer signal is consumed by the
process.

Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

A timer is declared similarly to avariable.

TIMER door_timeout ; |=|

Timers are set and reset in tasks. When atimer has not been set, it isinactive. When it
is set, it becomes active.

set
(now +10,
door_timeout)

A timer is set with atime value. timeis a special datatype and is mainly used in con-
nection with timers. The expression “now+10" isatime value and it adds the time
expression now and the duration 10 (here: seconds). now is an operator of thetime data
type and it returns the current real time. Duration is another special datatypeanditis
also mainly used in connection with timers. Y ou may add or subtract duration to time
and get time. Y ou may divide or multiply duration by areal and get duration. Y ou may
subtract atime value from another time value and get duration.

(more...)

The semantics of timersisthis; atimevalueisset inatimer and it becomes active. When
the timeisreached, a signal with the same name as the timer itself will be sent to the
process itself. Then the timer becomes inactive.

The timer signal can be input in the same way as ordinary signals:

>door_timeout

A timer may bereset. It then becomesinactive and no signal will be issued. (If an inac-
tivetimer isreset, then it remainsinactive.) A reset will aso remove atimer signa
instance already in theinput port. Thishappenswhen the timer hasexpired, but the time-
out signal has not been consumed.

If an active Timer is set, the time value associated with the timer receives anew value.
Thetimer isstill active. If atimer isset to atime which isaready passed, thetimer will
immediately issue the time-out signal.

Thereis an operator active which has atimer as a parameter and which returns a Bool-
ean that can be used to check whether a certain timer is active or not.

Timer signals may contain data as other signals may contain data. Different parameter
valuesin set means generation of several timer instances. r eset must match these param-
eter valuesto eliminate the correct timer instance.

(more...)

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21-59

- TIMe

The following is a sketch of afinite state machine of the behaviour of atimer.

V

set(q,T) e~
i i active(T)
@q reset(T) “S——

4 now >= Q:
Send T-signal to self

set(q,T);

Z.100

The Jante Law

The Jante L aw according to Aksel Sandemose:
1. Duskal ikketro at du er noe. Thou shalt not presumethat thou art anyone[of notice].

2. Du skal ikketro at du er like s meget som oss. Thou shalt not presume that thou art
asgood as us.

3. Du skal ikketro at du er klokere en oss. Thou shalt not presume that thou art any
wiser than us.

4. Duskal ikkeinnbille deg du er bedre enn oss. Thou shalt never indulgein the conceit
of imagining that thou art better than us.

5. Du skal ikke tro du vet mere enn oss. Thou shalt not presume that thou art more
knowledgeable than us.

6. Du skal ikke tro du er mere enn oss. Thou shalt presume that thou art more than us
[inany way]

7. Du skal ikke tro at du duger til noe. Thou shalt not presume that thou amount to
anything.

8. Du skal ikke le av oss. Thou art not entitled to laugh at us.

9. Du skal ikketro at noen bryr seg om deg. Thou shalt not presume that anyone cares
about you.

10.Du skal ikke tro at du kan laere oss noe. Thou shalt not suppose that thou can teach
us anything.

The Jante Law (Janteloven) is from the novel “En flygtning krysser sitt spor” (‘A refu-
gee crosses histracks') by the Norwegian/Danish author Aksel Sandemose. The book
takes place in an imaginary Danish small town called Jante, based on Sandemose' s
hometown Nykgbing Mors. The book isabout the ugly sides of Scandinavian smalltown
mentality, and the term has come to mean the unspoken rules and jeal ousy of such com-
munitiesin general.

21-60 Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Transactions

These are entities representing transactions or events in the dynamic behaviour of the
Domain, e.g. the purchase of acar, or auser passing a door.

transition

A transition performs a sequence of actions. During atransition, the data of a process
may be manipulated and signals may be output.

Actions may be:

task,

output,

Set,

reset,

export,

create request,
procedure call, or
remote procedure call

The transition will end with the process entering a

next state,
with a stop,
with areturn or

with the transfer of control to another transition.

Z.100
Transparency
means that the descriptions can be easily understood without excessive training and
study.
From Webster:

Transparent: 4. Easily understood or detected; obvious: transparent lies.

Validation

to establish the fitness or worth of a software product for its operational mission (from
the Latin valere, “to be worth”).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Dictionary for TIMe 21-61

TIMe

variable definition

Variables can be defined in processes, services and procedures.
Variables of process are created as part of the creation of the process instance.

Variables of servicesare created when the serviceis created as part of the creation of the
containing process instance.

Local variables of a procedure become parts of the procedure instance when the proce-
dureiscalled, and they cease to exist when the procedure returns.

Variableswill get default initial valuesif nothing elseis specified.
Z.100

Variant
isaVersion of acomponent that is designed to co-exist in parallel with other versions of
a component, as an alternative. One variant of a component is seldom “better” than
another, but offers different alternative functionality (e.g. for different computer
platforms).
Verification
to establish the truth of correspondence between a software product and its specification
(from the Latin veritas, “truth”).
Version
Isacommon term for Revisions and Variants.
Isalso used to denote an identified product configuration with a defined status, typically
indicating alarger change than anew revision (e.g. version 5.0 of FrameMaker).
Verify
means to ascertain that a property is true also in the running system (or relative to
another description)
From Webster:
21-62 Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe -

1: to confirm or substantiate in law by oath 2: to establish the truth, accuracy, or reality
of something

virtual processtype

A virtual processtypeisaprocess type that can be redefined in a subtype of the enclos-
ing block type.

The virtuality is specified in the process type heading or by <virtuality> in the corre-
sponding process type reference symbol.

A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint.

Z.100 (virtual types)

virtuality

Thevirtuality of atype defines whether the typeisvirtual (so that it can be redefined in
a subtype of the enclosing type), redefined (aredefined type, but still virtual), or final-
ised, that a redefinition that cannot be further redefined.

<virtuality>::= virtual | redefined | finalized

 virtual isused when atypeisintroduced as avirtual type. A virtual type must be a
type defined locally to another type; theimplication isthat it can be redefined intypes
that inherit from the enclosing type.

» redefined is used when the redefinition of avirtual typeis still virtual.
+ finalized is used when the redefinition is not virtual.

virtuality constraint

A constraint on avirtual type has the form of avirtuality\-constraint:
<virtuality-constraint> ::= atleast <identifier>

where <identifier> identifies atype (which is called the constraint type) of the appropri-
ate kind (block, process, service or procedure).

The implication of aconstraint isthat a redefined or finalized definition of the virtual
type must be atype definition that inherits from the constraint type. In case of no con-
straint specified, the definition of the virtual type itself is the constraint.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Dictionary for TIMe 21 -63

- TIMe

virtual (input) transition

A virtual input transitionisaspecial case of ageneral notion of virtual transition (virtual
priority input, virtual start, virtual spontaneous transition). In addition SDL has virtual
save.

Redefinition of virtual transitions/saves corresponds closely to redefinition of virtual
types.
* A virtual start transition can be redefined to a new start transition.

» A virtual priority input or input transition can be redefined to anew priority input or
input transition or to a save.

» A virtual save can be redefined to a priority input, an input transition or a save.
* A virtual spontaneous transition can be redefined to a new spontaneous transition.
Z.100

Walkthrough

By “walkthrough” we mean an activity which will make a group of people responsible
in solidarity for adocument by their joint scrutiny of the document.

21-64 Dictionary for TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

	Abstraction
	Abstract system
	Action
	Active object
	Actor
	Actual gate
	Aggregation
	Alternative
	Application
	Architecture
	asterisk state
	Attribute
	Attribute specification
	Attributes
	Automaton
	Baseline
	Behaviour associated with an object model
	block
	block set
	block type
	block type diagram
	block (type) heading
	block type reference
	Casting
	channel
	Class diagram
	Class with constraints on its environment
	Classes defined by means of aggregation
	Complete abstract system
	Concrete system
	Condition (MSC 92)
	Condition (MSC 96)
	Configuration
	Configuration Control
	Configuration Item
	Configuration Management
	Configuration Control Board
	Configuration Management Plan
	Connection Point
	Connections
	Constructive part of a description
	Content
	Context
	Coregion
	Counter counter implementation
	Counter implementation
	create
	dashed entity
	decision
	Declarative
	Description
	Design oriented development
	diagram heading
	Distillery
	Document
	Domain
	Domain auxiliary descriptions
	Domain descriptions
	Domain dictionary
	Domain model
	Domain statement
	Domain Statement
	entity kinds
	Environment
	environment
	Environment
	Event
	Expressiveness
	Family descriptions
	finalised input
	finalised process type
	Formal Semantics
	Framework
	Functional property
	gate
	General order relation
	Generalisation/specialisation
	Helpers
	HMSC start
	Identification
	identifier
	Illustrative part of a description
	Implementation
	Imperative
	Incomplete messages (lost and found)
	input
	Input event
	Instance
	Instance
	Instance descriptions
	Interface Role
	Language
	Liveness Property
	local variables
	Localisation (nesting)
	Loop (HMSC)
	Message
	Method
	Methodology
	Model checking
	MSC diagram
	MSC document
	MSC heading
	MSC heading
	MSC reference
	MTTF
	Non-functional property
	Notation
	Object classes with attributes, relations and connections
	Objects and Object Sets
	Object model
	Operations
	Operator
	output
	Output event
	package
	package reference clause
	page numbering
	Passive object
	Physical node
	procedure
	procedure call
	procedure heading
	procedure reference
	procedure start
	Process
	process
	process diagram
	process (reference)
	process set
	process type
	process type diagram
	process (type) heading
	Proof
	Property
	Property
	Property model
	Property oriented development
	redefined process type
	Reference expression
	Real aggregation
	Refinement
	Relation aggregation
	Relations
	Relations
	Reliability
	remote procedures
	Restrictive condition
	return
	Revision
	Role
	Safety Property
	save
	scope units
	Service
	service
	service (reference)
	service (type) heading
	signal definition
	signal list
	signal route
	Software node
	specialisation
	Specification
	Stake holder
	start
	state
	State
	Status
	Subject entities
	SubMSC (MSC 92)
	Synthesis
	System
	System family
	System family statement
	System instance
	system (type) heading
	task
	text symbol
	Timeline (instance axis)
	Timer
	timer
	The Jante Law
	Transactions
	transition
	Transparency
	Validation
	variable definition
	Variant
	Verification
	Version
	Verify
	virtual process type
	virtuality
	virtuality constraint
	virtual (input) transition
	Walkthrough

