
 
Specification and Description 

Language (SDL) 
 

Definition 
 
Specification and description language (SDL) is an object-oriented, formal 
language defined by The International Telecommunications Union– 
Telecommunications Standardization Sector (ITU–T) (formerly Comité 
Consultatif International Telegraphique et Telephonique [CCITT]) as 
recommendation Z.100. The language is intended for the specification of 
complex, event-driven, real-time, and interactive applications involving many 
concurrent activities that communicate using discrete signals. 
 

Overview 
 
This tutorial discusses the applications and reasons for the use of specification 
and description language (SDL). Over the last decade, the size of produced 
software has increased dramatically. More and more systems are multiprocess 
and distributed, and they execute in a heterogeneous environment. It is 
increasingly accepted within a steadily growing range of industrial segments that 
the best way to meet the needs of these systems is through formal methods. 
Furthermore, as the international market grows, equipment from different 
manufacturers must be able to communicate with each other. Therefore, the 
formal methods should be internationally standardized. Telecommunications 
software engineers have developed such methods and tools for the development 
of complex real-time software. SDL is an object-oriented formal language defined 
by the ITU−T for specification of complex, real-time applications. The strength of 
SDL is its ability to describe the structure, behavior, and data of a system. 
 

Topics 
 
1. Benefits of a Specification Language 
2. History 
3. SDL Characteristics 
4. Theoretical Model and Structure 
5. Sharing, Reuse, and Maintenance 
6. Openness, Portability, Scalability, and Distributed Applications 

 
 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

2/20

 

7. Graphical and Textual Notations and Applications Areas 

Self-Test 

Correct Answers 

Glossary 

1. Benefits of a Specification Language 
It is widely accepted that the key to successfully developing a system is to produce 
a thorough system specification and design. This task requires a suitable 
specification language, satisfying the following needs:  

• a well-defined set of concepts 

• unambiguous, clear, precise, and concise specifications 

• a thorough and accurate basis for analyzing specifications 

• a basis for determining whether or not an implementation conforms to 
the specifications 

• a basis for determining the consistency of specifications 

• computer support for generating applications without the need for the 
traditional coding phase 

SDL has been defined to meet these demands. It is a graphical specification 
language that is both formal and object-oriented. The language is able to describe 
the structure, behavior, and data of real-time and distributed communicating 
systems with a mathematical rigor that eliminates ambiguities and guarantees 
system integrity. It has a graphic syntax that is extremely intuitive. Even 
nonconstructors quickly obtain an overview of a system's structure and behavior. 
The most important characteristic of SDL is its formality. The semantics behind 
each symbol and concept are precisely defined. Above all, the great strength of 
SDL lies in describing large real-time systems.  

2. History 
The development of SDL started in 1972. A 15-member study group within CCITT 
representing several countries and large telecom companies like Bellcore, 
Ericsson, and Motorola began research on a standard specification language for 
the telecommunications industry. The first version of the language was issued in 
1976, followed by new versions in 1980, 1984, 1988, 1992, and 1996. The latest 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

3/20

 

versions expanded the language considerably and simplified interfacing. Today 
SDL is a complete language in all senses. 

SDL and Other Languages 

SDL is well suited to be the core of full-scale projects because of its abilities to 
interface with other languages. Such languages include other high-level notations 
for analysis such as object modeling technique (OMT)/unfied modeling language 
(UML) object models and mobile switching center (MSC) use-cases, as well as 
abstract system notation one (ASN.1) or common object request broker 
architecture (CORBA)/interface description language (IDL) data-type definitions. 
Furthermore, there are tools available that can generate executable code—for 
example, C/C++ or ITU high-level language (CHILL), directly from the SDL 
design. Tests can also be generated from the SDL specification by making a test 
suite in tree and tabular combined notion (TTCN). See Figure 1 for the relations 
between these languages.  

Figure 1. The Relations between Different Languages and SDL 

 

Typically, the procedure from requirements analysis to product implementation 
and testing would involve the following steps: 

• Collect the initial requirements in a text document. 

• Study system analysis results in a number of OMT/UML object models 
and MSC use-cases depicting typical scenarios. The resultant classes 
are implemented in SDL as SDL block diagrams and SDL/ASN.1/IDL 
data-type definitions. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

4/20

 

• Complete the SDL diagrams and ASN.1 or IDL specifications to a level 
where they can be simulated and checked for consistency with the 
system requirements analysis. 

• Use verification and validation to determine whether required 
properties are correctly and completely implemented. The verification 
procedure also detects general errors like deadlocks, signal races, loss 
of signals, etc. When SDL design has proved consistent with the 
requirements, a code for the application can be generated. 

• Make a test suite in TTCN. Tests can be generated from the SDL 
specification. In some cases, such tests are already available (e.g., from 
standardization bodies). 

• Generate code to create an executable test suite that can be run in a test 
system. 

• Run the executable tests and test the application in the target 
environment. 

3. SDL Characteristics 
SDL is a design and implementation language dedicated to advanced technical 
systems (i.e., real-time systems, distributed systems, and generic event-driven 
systems where parallel activities and communication are involved). Typical 
application areas are high- and low-level telecom systems, aerospace systems, 
and distributed or highly complex mission-critical systems.  

SDL has a set of specialized characteristics that distinguishes it from other 
technologies:  

• standard—SDL is a nonproprietary internationally standardized 
language (ITU–T standard Z.100 and Z.105).  

• formal—SDL is a formal language ensuring precision, consistency, 
and clarity in the design that is crucial for mission-critical applications 
(e.g., most technical systems).  

• graphical and symbol-based—SDL is a graphical and symbol-
based language providing clarity and ease of use. An SDL design is both 
an implementation and its own documentation.  

• object-oriented (OO)—SDL is a fully OO language supporting 
encapsulation, polymorphism, and dynamic binding. Moreover, SDL 
extends the traditional data-oriented OO class concept by customizing 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

5/20

 

it for technical applications and introducing OO concepts for active 
objects (e.g., systems, blocks, and state machines).  

• highly testable—SDL has a high degree of testability as a result of its 
formalism for parallelism, interfaces, communication, and time. The 
quality and speed improvements are dramatic compared to traditional 
nonformal design techniques.  

• portable, scalable, and open—SDL is portable, scalable, and open. 
SDL implementations are independent of cross compilers, operating 
systems, processors, interprocess communication mechanisms, and 
distribution methods. A single SDL implementation can be used for 
many different target architectures and configurations.  

• highly reusable—SDL provides a high degree of reuse. Because of 
visual clarity, testability, OO concepts, clear interfaces, and abstraction 
mechanisms, SDL design has a much higher degree of reusability than 
any other type of design or implementation.  

• efficient—The formalism and the level of abstraction that is provided 
by SDL make it possible to apply sophisticated optimization techniques 
for cross-compilation.  

4. Theoretical Model and Structure 

Theoretical Model 

The basic theoretical model of an SDL system consists of a set of extended finite 
state machines (FSMs) that run in parallel. These machines are independent of 
each other and communicate with discrete signals. 

An SDL system consists of the following components: 

• structure system, block, process, and procedure hierarchy 

• communication signals with optional signal parameters and 
channels (or signal routes) 

• behavior processes 

• data abstract data types (ADT) 

• inheritance describing relations and specialization 

The following subsections introduce the basic concepts. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

6/20

 

Structure 

SDL comprises four main hierarchical levels: 

• system 

• blocks 

• processes 

• procedures 

Figure 2. The Structural View of an SDL System 

 

Dividing a system into a system, block, and process hierarchy is called 
partitioning a system. The objectives of partitioning include the following: 

• hiding information (move details not important in an overview to lower 
levels) 

• following natural functional subdivisions 

• creating modules of intellectually manageable sizes 

• creating a correspondence with actual software or hardware 

• reusing already-existing specifications 

Each SDL process type is defined as a nested hierarchical state machine. Each 
substate machine is implemented in a procedure. Procedures can be recursive; 
they are local to a process or they can be globally available depending on their 
scope. SDL also supports the remote procedures paradigm, which allows one to 
make a procedure call that executes in the context of another process.  

SDL processes have separate memory spaces, (i.e., data is local to a process or 
procedure). This is a highly important aspect that dramatically reduces the 
number of deficiencies and increases robustness. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

7/20

 

A set of processes can be logically grouped into a block (that is, subsystem). 
Blocks can be nested inside each other to recursively break down a system into 
smaller and maintainable encapsulated subsystems. These break-down 
mechanisms are important for large team development efforts, and SDL 
simplifies this by also providing clear interfaces between subsystems. 

Static and Dynamic Structure 

The static structure of a system is defined in terms of blocks and channels. A 
block is perceived as a module with the well-known black box model. 

The dynamic structure is defined with the help of the process and the signal route 
concepts. A process is an independent device that reacts to stimuli in the form of 
signals (the process concept is described more fully in the Behavior subsection). 

Communication 

SDL does not use any global data. SDL has two basic communication 
mechanisms: asynchronous signals (and optional signal parameters) and 
synchronous remote procedure calls. Both mechanisms can carry parameters to 
interchange and synchronize information between SDL processes and with an 
SDL system and its environment (e.g., non–SDL applications or other SDL 
systems). 

SDL defines clear interfaces between blocks and processes by means of a 
combined channel and signal route architecture. This communication 
architecture with formally clear signal interfaces simplifies large team 
development and ensures consistency between different parts of a system. 

SDL defines time and timers in a clever and abstract manner. Time is an 
important aspect in all real-time systems but also in most distributed systems. An 
SDL process can set timers that expire within certain time periods to implement 
time-outs when exceptions occur but also to measure and control response times 
from other processes and systems. 

When an SDL timer expires, the process that started the timer receives a 
notification (signal) in the same way as it receives any other signal. Actually an 
expired timer is treated in exactly the same way as a signal. SDL time is abstract 
in the sense that it can be efficiently mapped to the time of the target system, be it 
an operating system timer or hardware timer. This makes it possible to simulate 
time in SDL models before the target system is available. 

Other aspects of the signaling concept in SDL are as follows: 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

8/20

 

• Signal and process priorities are not within the scope of SDL. These 
issues are left instead to the implementation phase where the user with 
special directives can assign signal and process priorities. 

• An SDL signal can only be sent to one specific process instance at a 
time. To enable broadcasting the user can include a package with some 
general-purpose functions that will provide a broadcasting mechanism 
in the implementation. 

Figure 3. Signals between Two Processes Travel through 
Channels between Blocks and from One Process to Another via 
Signal Routes 

 

Behavior 

The dynamic behavior in an SDL system is described in the processes. The 
system/block hierarchy is only a static description of the system structure. 
Processes in SDL can be created at system start or created and terminated at run 
time. More than one instance of a process can exist. Each instance has a unique 
process identifier (PId). This makes it possible to send signals to individual 
instances of a process. The concept of processes and process instances that work 
autonomously and concurrently makes SDL a true real-time language. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

9/20

 

Figure 4. Creation of a New Process Instance at Runtime 

 

Data 

SDL accepts two ways of describing data, abstract data type (ADT) and ASN.1. 
The integration of ASN.1 enables sharing of data between languages, as well as 
the reuse of existing data structures. 

The ADT concept used within SDL is very well suited to a specification language. 
An abstract data type is a data type with no specified data structure. Instead, it 
specifies a set of values, a set of operations allowed, and a set of equations that 
the operations must fulfill. This approach makes it simple to map an SDL data 
type to data types used in other high-level languages. 

Figure 5. Abstract Data Type Example 

 

The set of predefined sorts in SDL makes it possible to work with data in SDL in a 
traditional way. Variables of standard sorts, such as the following, can be 
declared: 

• integer 

• real 

• natural 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

10/20

 

• boolean 

• character 

• duration 

• time 

• charstring 

• PId 

• complex data sorts (these can be created with Array and Struct as 
depicted in Figure 6) 

A description of a more advanced use of ADT follows, where the operator concept 
is used for hiding data manipulation. 

How to Use Advanced ADTs 

ADTs in SDL can be used for much more than representing data, such as for the 
following: 

• hiding data manipulation 

• hiding algorithmic parts of a specification 

• creating an interface to external routines 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

11/20

 

Figure 6. Advanced Use of ADTs 

 

As Figure 6 depicts, data manipulation is hidden in operators. The function of the 
operator update is to update the complete result database and recalculate place 
for all participants after new results. This is an example of a sorting-and-seeking 
algorithm that is much better to hide in operators than to express in ordinary 
graphical SDL. Still, the operator should be described using SDL diagrams. 

Inheritance 

The OO concepts of SDL give the user powerful tools for structuring and reuse. 
The concept is based on type declarations. Type declarations can be placed 
anywhere, either inside the system close to their context, or at system level. 
Figure 7 shows an access control system with block and process types at system 
level. Type declarations can also be placed in packages outside the system, for 
sharing with other systems. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

12/20

 

Figure 7. System with Type Declarations 

 

One of the major benefits of using an object-oriented language is the simple and 
intuitive way new objects can be created by adding new properties to existing 
objects or by redefining properties of existing objects. This is what is commonly 
referred to as specialization. 

In SDL, specialization of types can be accomplished in two ways: 

• A subtype might add properties not defined in the supertype. One can, 
for example, add new transitions to a process type, add new processes 
to a block type, etc. (see Figure 8). 

• A subtype can redefine virtual types and virtual transitions defined in 
the supertype. It is possible to redefine the contents of a transition in a 
process type, to redefine the contents/structure of a block type, etc. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

13/20

 

Figure 8. Specialized Block Type 

 

5. Sharing Information, Reuse, and 
Maintenance 

Sharing Information—Packages 

SDL packages are graphical SDL libraries that define data structures, signals, 
process types, block types, and system types that can be shared between SDL 
systems and projects. This facilitates maintenance and reuse aspects for large 
applications and allows for sharing information between many systems. 

Reuse and Maintenance (Specialized 
Inheritance and Polymorphism) 

Apart from supporting object-oriented data (i.e., object-oriented passive objects) 
SDL also supports all object-oriented features for active objects—for example, 
systems, blocks, and state machines down to the transition level. This extends the 
traditional passive class concept that is more oriented towards nontechnical 
applications and is found in UML, OMT, C++, and Java. SDL specializes it for 
technical applications (i.e., real-time systems, distributed systems, and event-
driven systems, where there is a heavier focus on communication and active 
state-oriented objects). 

6. Openness, Portability, Scalability, and 
Distributed Applications 

Openness 

The latest SDL standard (SDL–96) defines external procedures (i.e., procedures 
that are implemented outside an SDL system). These procedures can be 
implemented in languages other than SDL, such as C code. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

14/20

 

With the ITU standard Z.105, SDL is combined with ASN.1. This extension to 
SDL allows a choice between declaring data according to the native SDL syntax or 
according to ASN.1. ASN.1 modules are treated as SDL packages and can, for 
example, be shared between an SDL design and a TTCN test suite. 

Portability and Scalability 

A key feature of SDL is its abstraction mechanisms for seamless portability 
between cross-compilers and operating systems. Moreover, the same abstraction 
mechanisms permit the user to choose how to map SDL processes to physical 
processes, IPC (interprocess communication) schemes, and time according to 
what is most efficient in each actual case. The same implementation can be used 
for many different configurations and different kernels, ranging from 
monotasking small systems to multiprocessor high-end systems. 

Distributed Applications 

The same abstraction mechanisms that make SDL implementations independent 
of cross-compilers, operating systems, and IPC and process mapping schemes 
also make an SDL system independent of distribution architecture and 
distribution method. This makes SDL the perfect language for modeling and 
implementing distributed systems. One SDL model supports many physical 
distribution configurations. 

7. Graphical and Textual Notations and 
Application Areas 

Graphical and Textual Notations 

The SDL language supports two equivalent notations. In addition to the graphical 
notation (SDL−GR), the textual notation (SDL−PR) is standardized. 

Application Areas 

Although SDL evolved within telecommunications, it is becoming increasingly 
popular in other industries as well. Some examples of applications of SDL outside 
the telecommunication area include the following: 

• satellite communications 

• aeronautical standardization 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

15/20

 

• medical equipment 

• railway control system 

• communication protocols in cars 

Self-Test 
1. What distinguishes SDL from other graphical specification languages? 

a.  SDL is both natural and intuitive. 

b.  SDL is formal, object-oriented, and standardized. 

c.  SDL is modern. 

d.  SDL is used internationally. 

2. Why is SDL particularly well-suited for the development of 
telecommunications applications? 

a.  SDL is able to describe real-time and distributed communicating 
systems. 

b.  SDL contains special telecommunications protocols. 

c.  SDL is well established. 

d.  SDL is owned by 15 large telecommunications companies. 

3. In what way is object-orientation extended in SDL as compared to other 
object-oriented languages? 

a.  SDL introduces polymorphism. 

b.  SDL introduces data-oriented object-oriented classes. 

c.  SDL introduces testability. 

d.  SDL introduces object-oriented concepts for active objects. 

4. How can time be simulated without access to the target system? 

a.  SDL time is abstract and can be mapped to the time of the target 
system. 

b.  The user can include a package that will provide this mechanism. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

16/20

 

c.  The user can assign signal and process priorities with special directives. 

d.  SDL can set timers that measure response times. 

5. Why is it useful to be able to break down a system into encapsulated 
subsystems? 

a.  The subsystems can have different timers. 

b.  The SDL program can run on smaller computers. 

c.  It makes large team development easier. 

d.  The subsystems can be of different sizes. 

6. The dynamic behavior in an SDL system is described in ___________. 

a.  the system/block hierarchy 

b.  the channels 

c.  the timers 

d.  the processes 

7. Procedures outside an SDL system cannot be implemented in a language 
other than SDL. 

a.  true 

b.  false 

8. Applications of SDL are confined to the telecommunications industry. 

a.  true 

b.  false 

9. The graphical and textual notations of SDL are equivalent. 

a.  true 

b.  false 

10. ADTs in SDL can be used for hiding data manipulation and algorithmic parts 
of a specification. 

a.  true 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

17/20

 

b.  false 

Correct Answers 
1. What distinguishes SDL from other graphical specification languages? 

a.  SDL is both natural and intuitive. 

b.  SDL is formal, object-oriented, and standardized. 

c.  SDL is modern. 

d.  SDL is used internationally. 

See Definition. 

2. Why is SDL particularly well-suited for the development of 
telecommunications applications? 

a.  SDL is able to describe real-time and distributed 
communicating systems. 

b.  SDL contains special telecommunications protocols. 

c.  SDL is well established. 

d.  SDL is owned by 15 large telecommunications companies. 

See Topic 1. 

3. In what way is object-orientation extended in SDL as compared to other 
object-oriented languages? 

a.  SDL introduces polymorphism. 

b.  SDL introduces data-oriented object-oriented classes. 

c.  SDL introduces testability. 

d.  SDL introduces object-oriented concepts for active objects. 

See Topic 3. 

4. How can time be simulated without access to the target system? 

a.  SDL time is abstract and can be mapped to the time of the 
target system. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

18/20

 

b.  The user can include a package that will provide this mechanism. 

c.  The user can assign signal and process priorities with special directives. 

d.  SDL can set timers that measure response times. 

See Topic 4. 

5. Why is it useful to be able to break down a system into encapsulated 
subsystems? 

a.  The subsystems can have different timers. 

b.  The SDL program can run on smaller computers. 

c.  It makes large team development easier. 

d.  The subsystems can be of different sizes. 

See Topic 4. 

6. The dynamic behavior in an SDL system is described in ______________. 

a.  the system/block hierarchy 

b.  the channels 

c.  the timers 

d.  the processes 

See Topic 4. 

7. Procedures outside an SDL system cannot be implemented in a language 
other than SDL. 

a.  true 

b.  false 

See Topic 4. 

8. Applications of SDL are confined to the telecommunications industry. 

a.  true 

b.  false 

See Topic 7. 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

19/20

 

9. The graphical and textual notations of SDL are equivalent. 

a.  true 

b.  false 

See Topic 7. 

10. ADTs in SDL can be used for hiding data manipulation and algorithmic parts 
of a specification. 

a.  true 

b.  false 

See Topic 4. 

Glossary 
ADT 
abstract data type 

ASN.1 
abstract syntax notation one; a standardized language for specification of data 
objects and structures in an implementation-independent fashion; the language 
is defined as part of ISO standard 8822 

CCITT 
Comité Consultatif International Telegraphique et Telephonique; the former 
name of ITU−T 

CORBA 
common object request broker architecture; a standard set by OMG that specifies 
ways for server and client objects to interact with each other 

FSM 
finite state machines 

IDL 
interface description language; a key component of CORBA; a textual language 
that enables designers to capture interfaces and data types of objects 

IPC 
interprocess communication 



 

Web ProForum Tutorials 
http://www.iec.org 

Copyright © 
The International Engineering Consortium 

20/20

 

ITU 
International Telecommunications Union; a UN agency with some 200 member 
nations; umbrella organization for telecommunications 

OMG 
object management group; a standardization body 

ITU−−−−T 
the telecommunications standardization sector of ITU 

OMT 
object modeling technique; a notation for capturing requirements with object 
analysis 

OO 
object-oriented 

SDL 
specification and description language; a formal language defined by ITU−T as 
recommendation Z.100 

SDL−−−−96 
SDL version 1996 

SDL−−−−GR 
graphical notation for SDL 

SDL−−−−PR 
textual notation for SDL 

TTCN 
tree and tabular combined notation; TTCN is a specialized subformal language 
for protocol conformance testing; standardized as ISO 9646-3 and used for 
specifying sequences of events comprising abstract test cases 

UML 
unified modeling language; a notation for capturing requirements with object 
analysis; UML is a synthesis of the popular techniques from Rumbaugh, Booch, 
and Jacobsson 


	Definition
	Overview
	1. Benefits of a Specification Language
	2. History
	3. SDL Characteristics
	4. Theoretical Model and Structure
	5. Sharing Information, Reuse, and Maintenance
	6. Openness, Portability, Scalability, and Distributed Applications
	7. Graphical and Textual Notations and Application Areas
	Self-Test
	Correct Answers
	Glossary

