I*

SDL-2000 Design Contest
3rd SDL And MSC Workshop

Specification of a Railway Crossing

Jens Brandt
(University of Kaiserslautern)

May 11 2002
*
1
predefined

system RailroadCrossing

Page 1 of 42

1

RailroadCrossing

1(1)

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Package predefined

NEWTYPE Boolean
LITERALS
true,false;
OPERATORS
"not": Boolean -> Boolean;
"and": Boolean, Boolean -> Boolean;
or" : Boolean, Boolean -> Boolean;
"xor": Boolean, Boolean -> Boolean;
"=>": Boolean, Boolean -> Boolean;
ENDNEWTYPE Boolean;

NEWTYPE Integer

LITERALS

NAMECLASS ('0"'9')+;
OPERATORS

"-" :Integer -> Integer;

"+" :Integer, Integer -> Integer;

"-" :Integer, Integer -> Integer;

. Integer, Integer -> Integer;
"I" :Integer, Integer -> Integer;
"mod": Integer, Integer -> Integer;
"rem": Integer, Integer -> Integer;
"<" :Integer, Integer -> Boolean;
">" :Integer, Integer -> Boolean;
"<="": Integer, Integer -> Boolean;
">="" Integer, Integer -> Boolean;
float: Integer -> Real;
fix : Real -> Integer;

ENDNEWTYPE Integer;

nen

SYNTYPE Natural = Integer
CONSTANTS >=0
ENDSYNTYPE Natural;

NEWTYPE Real
LITERALS
NAMECLASS (('0':'9")+) OR (('0"'9")*.'('0":'9")+);
OPERATORS
"." : Real -> Real;
"+" :Real,Real ->Real;
"." :Real,Real ->Real;
" :Real,Real ->Real;
"I" : Real,Real ->Real;
"<" :Real,Real ->Boolean;
">" : Real,Real ->Boolean;
"<=":Real,Real ->Boolean;
">=":Real,Real ->Boolean;
/* ASN.1 operator: */
power: Integer, Integer -> Real;
ENDNEWTYPE Real;

NEWTYPE PId
LITERALS
null;
OPERATORS
unique! : Pld -> PId;
ENDNEWTYPE PId;

1(4)

NEWTYPE Character
LITERALS
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, S|,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,
(Nl l|l " l#' I$l '0/' l&l "
.0. |1. .2| .3. .4. .5. '6‘ 7
g g i i it g
‘@, A, 'B' 'C' 'D' 'E' 'F' G,
UK LM N O

PR RS, T UL VLW
X2 .\. T,
""'b""d""f’ g,

o 'J'y KT N o'
o g S Y W
'X' y v 'z‘ ooy~ DEL

OPERATORS

chr : Integer -> Character;

num : Character -> Integer;

"<" : Character, Character -> Boolean;
"<="": Character, Character -> Boolean;
">" : Character, Character -> Boolean;
">=": Character, Character -> Boolean;

ENDNEWTYPE Character;

NEWTYPE Charstring String (Character,")
ADDING LITERALS

ENDNEWTYPE Charstring;

NEWTYPE Duration

LITERALS

NAMECLASS (('0':'9")+) OR (('0"'9")*.'('0":'9")+);
OPERATORS

duration!: Real -> Duration;

"+" : Duration, Duration -> Duration;

"." : Duration -> Duration;

: Duration, Duration -> Duration;
"*" - Real, Duration -> Duration;
"*" : Duration, Real -> Duration;
"/" : Duration, Real -> Duration;
"<" : Duration, Duration -> Boolean;
">" : Duration, Duration -> Boolean;
"<="": Duration, Duration -> Boolean;
">="": Duration, Duration -> Boolean;

ENDNEWTYPE Duration;

NEWTYPE Time
LITERALS
NAMECLASS (('0':'9")+) OR (('0"'9")*.'('0":'9")+);
OPERATORS
time!: Duration -> Time;

"<" :Time, Time ->Boolean;
"<=":Time, Time ->Boolean;
">" :Time, Time ->Boolean;
">=":Time, Time -> Boolean;
"+" : Duration, Time -> Time;
"+" : Time, Duration -> Time;
"-" : Time, Duration -> Time;

: Time, Time -> Duration;
ENDNEWTYPE Time;

/* "is an apostrophe, ' ' is a space, '~'is a tilde */

NAMECLASS " ((""'&) OR ™™ OR ('(":'~")+ "

Page 2 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Package predefined 2(4)

GENERATOR equality(TYPE item) AN
OPERATORS
"=": equality, equality -> Boolean;
"/=": equality, equality -> Boolean;
/¥12105%/
encode: equality -> Bitstring;
encode: equality, Encoding -> Bitstring;
decode: Bitstring -> equality;
decode: Bitstring, Encoding -> equality;
/*1Z105END*/
ENDGENERATOR,;

GENERATOR ordered(TYPE item)
OPERATORS
"<" : ordered, ordered -> Boolean;
">" : ordered, ordered -> Boolean;
"<="": ordered, ordered -> Boolean;
">="": ordered, ordered -> Boolean;
ENDGENERATOR;

GENERATOR String(TYPE Itemsort LITERAL emptystring)
/* Strings are "indexed" from one */

LITERALS
emptystring;

OPERATORS
mkstring : ltemsort -> String;
length : String -> Integer;
first : String -> |[temsort;
last : String -> |temsort;
"/[" :String, String -> String;
extract! : String, Integer -> |[temsort;

modify! : String, Integer, Itemsort -> String;
substring: String, Integer, Integer -> String;
ENDGENERATOR String;

GENERATOR Powerset(TYPE Itemsort)

LITERALS
empty;

OPERATORS
"in" : Itemsort, Powerset -> Boolean;
incl : ltemsort, Powerset -> Powerset;
del : ltemsort, Powerset -> Powerset;
<" : Powerset, Powerset -> Boolean;
"> : Powerset, Powerset -> Boolean;
"<=": Powerset, Powerset -> Boolean;
">=": Powerset, Powerset -> Boolean;
"and" : Powerset, Powerset -> Powerset;
"or" : Powerset, Powerset -> Powerset;

ENDGENERATOR Powerset;

GENERATOR Array(TYPE Index, TYPE Itemsort)

OPERATORS
make! : ltemsort -> Array;
modify! : Array, Index, ltemsort -> Array;
extract!: Array, Index -> |[temsort;
ENDGENERATOR Array;

Page 3 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Package predefined

3(4)

/¥12105*/ /* Don't change this line */
/* ASN.1 types */
SYNTYPE

IA5String = Charstring
ENDSYNTYPE;

SYNTYPE
NumericString = Charstring (from ("0".."9"))
ENDSYNTYPE;

SYNTYPE
Printablestring = Visiblestring
ENDSYNTYPE;

SYNTYPE

Visiblestring = Charstring (from
(T Z0 A T [ON QM (Y i i)
ENDSYNTYPE;

NEWTYPE Graphicstring
inherits Charstring
operators all;
ENDNEWTYPE Graphicstring;

NEWTYPE Universalstring
inherits Charstring
operators all;

ENDNEWTYPE Universalstring;

NEWTYPE Enumeration
operators

pred : Enumeration -> Enumeration;
succ : Enumeration -> Enumeration;
first : Enumeration -> Enumeration;
last : Enumeration -> Enumeration;
num : Enumeration -> Integer;
"<" : Enumeration, Enumeration -> Boolean;
"<=" : Enumeration, Enumeration -> Boolean;
">" : Enumeration, Enumeration -> Boolean;
">=" : Enumeration, Enumeration -> Boolean;

ENDNEWTYPE Enumeration;

SYNONYM PLUS_INFINITY Real = external;
SYNONYM MINUS_INFINITY Real = external;

AN /¥12105*/ /* Don't change this line */
NEWTYPE Bit
inherits Boolean
literals O = false, 1 = true;
operators all;
ENDNEWTYPE Bit;

Encoding ::= ENUMERATED{BER,CER,DER,PER};

NEWTYPE Bitstring String0(Bit,"B);
adding
literals nameclass('0' or '1')*'B',
nameclass(('0":'9") or (‘A"'F'))*'H';
operators
"not": Bitstring -> Bitstring;
"and": Bitstring, Bitstring -> Bitstring;
"or" : Bitstring, Bitstring -> Bitstring;
"xor": Bitstring, Bitstring -> Bitstring;
"=>": Bitstring, Bitstring -> Bitstring;
ENDNEWTYPE Bitstring;

SYNTYPE Octet = Bitstring constants size (8)
ENDSYNTYPE Octet;

NEWTYPE Octetstring String(Octet,"B)
literals nameclass(('0' or '1')8)+'B',
nameclass((('0":'9") or ('A"'F'))2)+'H";
operators
bitstring : Octetstring -> Bitstring;
octetstring : Bitstring -> Octetstring;
Bit_String : Octetstring -> Bitstring; /* SDL 96 version */
Octet_String : Bitstring -> Octetstring; /* SDL 96 version */
ENDNEWTYPE Octetstring;

syntype Octet_String = Octetstring endsyntype;
syntype Bit_String = Bitstring endsyntype;

NEWTYPE NULL
literals null;
ENDNEWTYPE NULL;

NEWTYPE Object_element
literals nameclass ('0":'9")+;
ENDNEWTYPE Object_element;

NEWTYPE Object_identifier String(Object_element,emptystring)
ENDNEWTYPE Object_identifier;

NEWTYPE Any_type
ENDNEWTYPE Any_type;

GeneralizedTime =
ATCTime ::= Visiblestring;
UTCTime ::= Visiblestring;
EXTERNAL_Type ::= sequence
{ direct_reference Object_identifier optional,
indirect_reference Integer optional,
data_value_descriptor ObjectDescriptor optional,
encoding choice { single_ASN1_type Any_type,
octet_aligned Octetstring,
arbitrary Bitstring

Visiblestring;

5
ObjectDescriptor ::= Graphicstring;

Page 4 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Package predefined

[**** ASN.1 GENERATORS *****/

GENERATOR String0(TYPE Itemsort, LITERAL Emptystring)
String(ltemsort,Emptystring)

ENDGENERATOR,;

GENERATOR Bag(type Itemsort)

literals Empty;

operators
incl : ltemsort, Bag -> Bag;
del :Itemsort, Bag -> Bag;
length : Bag -> Integer;
take :Bag -> |[temsort;
makebag: ltemsort -> Bag;
"in" : ltemsort, Bag -> Boolean;
"<" :Bag, Bag -> Boolean;
">" :Bag, Bag -> Boolean;
"<=" :Bag, Bag -> Boolean;
">=" :Bag, Bag -> Boolean;
"and" : Bag,Bag ->Bag;
"or" :Bag,Bag ->Bag;

ENDGENERATOR,;
/*ISDL2000*/ /* Don't change this line */
exception
OutOfRange, /* A range check has failed. */

InvalidReference, /* Null was used incorrectly. Wrong Pid for this signal. */
NoMatchingAnswer, /* No answer matched in a decision without else part. */

UndefinedVariable, /* A variable was used that is "undefined". */
UndefinedField, /* An undefined field of a choice or struct was accessed. */
Invalidindex, /* A String or Array was accessed with an incorrect index. */
DivisionByZero, /* An Integer or Real division by zero was attempted. */
Empty; /* No element could be returned. */

4(4)

Page 5 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Package RailroadCrossing

/* signal definitions */

signal openGate;
signal closeGate;
signal gateOpen;
signal gateClosed;

signal trainApproaching(Trackld);
signal trainLeaving(Trackld);
signal detectLeaving(Trackld);
signal detectApproaching(Trackld);

signal trainSignal(SignalStatus);

signal setSignals(TrackList, SignalStatus);
signal settingDone(TrackList, SignalStatus);
signal leaving;

signal carsWaiting;
signal manyCarsWaiting;

signal trackAnnounce(Trackld,Real);
signal inSight(Trackld,PId);
signal position(Real,Real);

/* signallist definitions */

signallist trainSensor=detectApproaching, detectLeaving;
signallist trainDetection=trainApproaching, trainLeaving;
signallist carSensor=carsWaiting, manyCarsWaiting;

signallist gateControl=closeGate,openGate;
signallist gateStatus=gateClosed, gateOpen;

/* track layout */

synonym posSensor1 Real=3000;

/* position of the "approaching sensor" */
synonym posSignal Real=4000;

/* position of the "signal" */
synonym posSensor2 Real=4500;

/* position of the "leaving sensor" */
synonym posEnd Real=5000;

/* end of the track*/

/* track parameters */

synonym fastSpeed Real=80;

/* maximal speed of fast trains*/
synonym regularSpeed Real=50;

/* maximal speed of regular trains*/

1(2)

Page 6 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Package RailroadCrossing 2(2)

/* type definitions */ AN /* general purpose procedures*/ ﬁ

/* signal status */

value type SignalStatus;
literals red, green

endvalue type; minmax

/* track identifier */

syntype
Trackld=PId

endsyntype;

/* list of all tracks */

syntype
TrackList=String(Trackld,Emptylist)

endsyntype;

/* information about a track */
value type TrackInfo
struct

speed Real; /* maximal speed */
count Integer; /* number of trains between the sensors*/
sight PId; /* trains which ist in range of sight of signal */
sig SignalStatus; /* signal status */

endvalue type;

syntype
TrackTable=Array(Trackld, TrackInfo)
endsyntype;

Page 7 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Procedure minmax 1(1)

fpar lowerBound Real, upperBound Real, val Real; returns Real

D

vaJ\»< owerl nd

true false

val:=lowerBoundl;

@berB/&fnd

false true

val:=upperBoun(;

Q"

Page 8 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

use RailroadCrossing; ﬁ

System RailroadCrossing

synonym nrTracks Integer=4;
/* number of tracks */
theTracks(nrTracks):Track
Track
g1
A

|: trainSignal :|

TrackChannel

|: (trainSensor), inSight, trackAnnounce :|

v
theController(1)

PanelChannel

1(1)

<

[(gateControI)]

|: (carSensor), (gateStatus) :|

CrossingChannel

[(gateControI)]
v
theCrossing(1)

Page 9 of 42

Tuesday, June 18, 2002 [Rail wayCrossing. cbf]

CrossingChannel

Block theCrossing 1(1)

|: (carSensor) :| [(gateStatus)]

[(gateControI)]

theCarSensor(1,1) }‘ S3 | theGate(1,1)

|: (gateStatus) :| |

Page 10 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Process

theCarSensor

C

set(t1);

detecting

I

E

synonym arrival Duration=30;

/* delay between the cars */
synonym threshold Integer=2;

/* minimum #cars the sensors detects */
synonym manyThreshold Integer=10;

/* indication: too many cars */

/* timer */
timer t1:=arrival;
/* variables */

DCL cars Integer:=0;
DCL gateClosed Boolean:=true;

ateOpen

¢

gateClosed:=fal$

cars:=0

.

all waiting cars
pass the crossing

ateClosed

gateClosed:=trye

)

1(2)

Page 11 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Process theCarSensor 2(2)

detecting

cars:=cars+1; approaching car
must wait
cars else
threshold

carsWaE
cars else too many cars
are waiting

manyThreshold

manyCars@g

set(t1);

Page 12 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Process theGate 1(2)

synonym openingTime Duration=30; AN
/* time to open the gate */

synonym closingTime Duration=30;
/* time to close the gate */

/* timers */ AN
timer t1;

initially the
gate is closed

closed closing
[

E%penGate penGate
set set
(NOW+openingTime,t1) (NOW+openingTime,t1)

opening (closed) (opening)

B

Page 13 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Process theGate 2(2)

(open) opening

KD

t1 loseGate
>oseGate penGate
set gateOpe gateOpe set
(NOW+closingTime,t1) via S2 via S2 (NOW+closingTime,t1)
gateClos - gateOpe
via S3 via S3

(closing) open (closing)

cars are not allowed
to pass while closing
the gate

b

Page 14 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Block Type Track 1(1)

/* maximum number of trains per track */

synonym nrTrains Integer=3; ﬁ

aTrain(0,nrTrains) |<> theSensor(1,1)

SO |: position :|

|: trainSignal :|

|: inSight (trainSensor), trackAnnounce :|

|: trainSignal :|

g1

|: (trainSensor), inSight, trackAnnounce :|

Page 15 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Proce

(

ss theSensor

trackld:=self;

AN

maxSpeed:=
regularSpeed;

maxSpeed:=
fastSpeed;

trackAnnW

get a unique track id

/* variables*/

DCL maxSpeed Real;

/* maximum speed for this track */
DCL trackld Trackld;

/* unique track identifier */

1(2)

rackld,maxSp

startTrain

(trg

afrain

d)

announce the track
to the controller

ckld,maxSpeed

detecting

Tue)

create the first train
(at an arbitrary time)

Page 16 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Process

A

theSensor

detecting

pssition(p1,p2

/* variables*/

DCL p1,p2 Real;
/* position of the train */

train at position (p1,p2)

train is passing first sensor

false

true

letectApproa

letectApproa

ing
(trackld)

ing
(trackld)

poséﬁsq2

train is passing second sensor

osSm}Q&:pz

false

true

detectLeavi
(trackld)

detectLeavi
(trackld)

)

2(2)

Page 17 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Process aTrain 1(4)

fpar track Trackld, maxSpeed Real, requestSig Boolean;

synonym maxAccel Real=3; AN
/* maximum acceleration */
synonym minAccel Real=-10;
/* maximum brake acceleration */
synonym minSpeed Real=0;
/* minimum speed */
synonym minDist Real=100;

lastStep:=NOW; /* minimum distance between the trains */
pos:=0; /* extend input alphabet */ AN
speed:=0;
accel:=maxAccgl; signalset position;
/* inter train communication */
set — - N
(lastStep+stepTime)| step) /* timer */

timer step;
DCL lastStep Time;

synonym stepTime Duration=10;
questSi
/* variables */

DCL pos, posX Real;

/* current position */
DCL pposX, ppos Real :=-1;

/* current position of previous train */
DCL speed Real;

/* current speed */
DCL accel Real;

/* current acceleration */
DCL sigAccel Real:=maxAccel;

/* maximum acceleration permitted by the signal */
DCL nextTrain Pld:=null;

/* next train */
enRoute DCL rs Boolean:=false;
/* next train has to request signal */
DCL handoverDone Boolean:=false;

/* handing over of signal notification done */

false true

Page 18 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Process aTrain

fpar track Trackld, maxSpeed Real, requestSig

step

Boolean;

update

update current acceleration,
speed and position

2(4)

update calculates position,
speed, acceleration
breakingDist calculates minimum
braking distance
hands over signal
handover notification to the

possible to stop

in front of the signal

or handing over of signal
already done

handover

set

afrain

next train

rack,maxSpeed|fs])

create next train

before leaving the track

Page 19 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Process aTrain

fpar track Trackld, maxSpeed Real, requestSig Boolean;

DCL sig SignalStatus; ﬁ

immediately react to signal changes

green red

s|gAccel:=maxAcgel; gAccel:=minAcqdel;

maximum brake force

3(4)

Page 20 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Process aTrain

fpar track Trackld, maxSpeed Real, requestSig Boolean;

position of
previous train

none

éxtTraiFy

afrain

(frack,maxSpeed|rs)

rlextTrain:=offspr|ng

create next train

4(4)

Page 21 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Procedure handover

C

)

(tra

inSight

hand over signal notification

ck,nextTrgirt)

null

rs:=true;

to the next train

next train not yet created

handoverDone:=tfue;

X

-> it has to request signal

(1)

Page 22 of 42

Tuesday,

June 18, 2002 [RailwayCrossing

. cbf]

Procedure breakingDist

returns Real

D

sp:=speed;
dist:=0;

<>

>0

dist:=dist+sp;

else

/* variables */

DCL sp, dist Real;

calculate braking distance

sp:=sp+minAccg

simulate braking

]

: : dist

(1)

Page 23 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

update

D

posX:=pos;

s

else

1(1)

accel:=
(ppos-pos)+(ppos-pposX-speed)-minDist;

calculating maximum possible acceleration
(respecting position and speed of
previous train to prevent a collision

accel:=maxAccel;

calculation maximum possible acceleration

™1 (no previous train - maximum acceleration)

accel:=
call minmax(minAccel,sigAccel, accel);

acceleration is limited by signal status
and brake force

speed:=speed+accel;
speed:=

call minmax(minSpeed,maxSpeed,speed);

calculate current speed

pos:=pos+speed;

calculate current position

Page 24 of 42

Tuesday, June 18, 2002 [Rail wayCrossi ng. cbf]

TrackChannel

Block

Controller

theController |: trainSignal :|

|: (trainSensor), inSight, trackAnnounce :|

S2

2
'9

theController(1,1):Controller }‘93

S3

1(1)

[(gateControI)]

|: (gateStatus), (carSensor) :|

[(gateControI)]

A
g1

S1

CrossingChannel

Page 25 of 42

PanelChannel

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Process Type Controller

DCL trackLst TrackList:=Emptylist;
/* tracks of the system */

DCL trackTbl TrackTable:=(. (. 0,0,null,green .) .);
/* information about all the tracks */

|: (gateStatus),(carSensor) :| ’
¢}

S1

|: (trainDetection) :|

theSensorDebouncer

theCentralController:
FastTrainsPrecedenceController

(1)

B e basic functionality
of all controllers

|

all trains take precedence

: rsPrecedence :Iler

cars take precedence,
if there are too many waiting

Map a'A“w roller

@

regular trains wait for
fast trains

Fa : =Sutroller

g5 [(gateControI)]

settingDone :|

trackAnnounce,
inSight

|: setSignals :|

theSignalControl

[(trainSensor)]

(gateControl)
'[gae ontro]

[leaving]

|: trainSignal :|

S5

|: (gateStatus),(carSensor) :|

[(gateControI)]

\4

o |: trackAnnounce, inSight, (trainSensor) :|
¢}

|: trainSignal :|

v

Page 26 of 42

g3

[(gateControI)]

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Service Type = ManyCarsPrecedenceController

inherits TrainsPrecedenceController

)

(cars)

edefined
mapyCarsWaiting

a lot of cars
are waiting

>t1

switchCars

set(t1)

(cars)

(1)

synonym closureTime Duration=30;
/* closure time of the gate */

AN

/* timer */

timer t1:=closureTime;

number of trains
between the sensors
(should be 0 due to

change C1)

else

switchBoth

switchTraing

)

™)

Page 27 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Service Type TrainsPrecedenceController

inherits BasicController

switchBoth

trains

eaving(trad

initially the gate is open
and all signals are green

Re)

edefined

trainApgroaching(tfac

trgckThbl(track).count:=

tragkTbl(track).count+1;

)

total number of trains
(all tracks) between

switchBoth

the sensors

else

switchTraing

(both) (-) (trains)

first train
approaching

1(1)

Page 28 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Service Type FastTrainsPrecedenceController 1(1)

inherits BasicController

synonym closureTime Duration=120; AN
/* closure time of the gate */

cars

/* timer */ AN

timer t1:=closureTime;

-
o

egularTracks returns all
[~ | regular tracks
switchTraing
switchFas signals of regular tracks
[~ |tored, close the gate
trains

trains

gt

edefined
rsWaiting

Ny

ht:=
ht-1;

total number of trains

total t (all tracks) between
the sensors
else
0
0 else
switchCars switchFast switchCars
set(t1) set(t1)

0

cars (fast) (cars) (-)

Page 29 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Procedure switchFast

C

D

=call

=
=

regularTragks;

setSigna

/* variables */

DCL tr, tr2 TrackList;
DCL st SignalStatus;

set all stopping signals

(tr,red)

of regular Tracks

wait until all signals

L

w
s<a>‘gDone(tr2, bt) / * ;

false

tr=tr.
and st=rei

true

closeGa

have been set

close the gate

via g1

~

waiting \

wait until the gate

_J

ateClosed

has been closed

1(1)

Page 30 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Procedure regularTracks

(1)

returns TrackList

/* variables */

DCL IstCopy TrackList;
DCL regular TrackList;

DCL tr Trackld;

egular:=Emptylist;

<Cop Emptylist for all tracks

else

stCopy:=trackL1;t;

tr:=first(IstCopy

regular
false true
regular:= add the tracks to
regular//mkstring(tF); the list
IstCopy:=
substring(|stCopy,2,length{IstCopy)-1);

L]

Page 31 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

theSignalControl

/* variables */

DCL tracks TrackList;

waiting

not all signals have
been set, waiting
for a leaving train

/* tracks to set */
DCL IstCopy TrackList;

/* current tracks */
DCL toDo TrackList;

/* remaining tracks*/

etSignals
(to20, sigStatu

/]

leaving

IstCopy:=toDo
tracks:=toDo;
toDo:=Emptylist;

<

for all signals
in the list IstCopy

DCL tr Trackld;
/* current track */

DCL sigStatus SignalStatus;
/* desired signal status */

1(1)

setSignal set a signal

else

tr:=first(IstCopy);

signal can

be set

Emptylist

else Emptylist

g(tr); | signal will

be set later

settingDol
tracks, sigStatds)

L T

false
setSignal toDjo:=toDo//mkstrir]
(tr,sigStatus
IstCopy:=
stCopy,2,length{IstCopy)-1);

))

Page 32 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Procedure setSignal

fpar tr Trackld, sigstat SignalStatus;

D

trarkaI(tr).sig :=sigstat;

é?fffmr.'m

else null

rainSignal(siystat)
o trackTbl(tr).stght

(1)

Page 33 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Service theSensorDebouncer

(1)

/* timer */
timer t1(Trackld);
timer t2(Trackld);

/* variables */
DCL track Trackld;

synonym threshold Duration=1;
/* debouncing threshold */

)

detectApproaching tectLeaving
(track) (track)

7]

pt(NOW+threshqld,

(2]

t1(track)); t2(track))

pt(NOW+threshqld,

no sensor signal
t1(track) t2(track) for at least
|| threshold time units
sensor signals

in the next threshold
time units will not be

passed to
theCentralController

trainApproacking trainLeavi

(track) (track)
leaving wake up

theSignalControl

)

Page 34 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Service Type BasicController

1(4)
/* variables */
virtual DCL train Pld;
DCL track Trackld;
DCL speed Real;
trains \ initially the gate is closed
and all signals are green
trackAEnce(track, speed)
. . append track to track list,
trackLst:trackLst // mkst{ingftrack); set speed information in table
trackT|bl(track).speed:FSpeed;
A A A A A
(gateStatus), |: (trainDetection) :| trackAnnounce, [settingDone :| [(gateControI)]
(carSensor) inSight
g1 g2 g3 g4 g5
[(gateControI)] |: trainSignal :| |: setSignals :|
v

\ 4 \ 4

Page 35 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Service Type BasicController

)

=

handover requested

irﬁ}ﬂ(track,trai h

tracqTbl(track).sight:ftrain;

update table entry

<ﬁa:in null

else

send signal status to
train which is now in

trainS|gnal(track Tb{ack).sig)
to[trackTbl(track).Sight

)

range of sight

2(4)

Page 36 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Service Type BasicController

standard behaviour

%
<

trgckThbl(track).coy
trgckThbl(track).coy

nt:=
nt-1

)

rack)

ht:=
ht+1

vi
(5

rtual virtual
Waiting mapyCarsWaitin

))

switchTrair‘D

close the gate, signals to green

totalCoun

returns total number of trains
(all tracks) between the sensors

switchBoth

open the gate, signals to green

switchCarg

signals to red, open the gate

3(4)

Page 3

7 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Service Type BasicController 4(4)

"manual close" request

switchTraing

trains

trains

"manual open" request

safe to open the gate

else

Page 38 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Procedure

switchTrains

C

)

closeGa

via g1

close the gate

>19C|03ed U

(trackLst,greert)

setSigna

wait until the gate
has been closed

)

finally clear all
stopping signals

(1)

Page 39 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Procedure

switchBoth

C

)

openGa
via g1

setSignals(trackl

X

open the gate

green)

clear all

stopping signals

(1)

Page 40 of 42

Tuesday,

June 18, 2002 [RailwayCrossing. cbf]

Procedure

D

switchCars

setSignaIs(traERb{t,red)

DCL tr TrackList;
DCL st SignalStatus;

(1)

set all stopping signals

Wi
s%‘ngDone(trin /

wait until all signals

false

=track
and st=rei

true

openGa

have been set

open the gate
(C1: no trains

via g1

X

between the sensors)

Page 41 of 42

Tuesday, June 18, 2002 [RailwayCrossing. cbf]

Procedure totalCount 1(1)

returns Integer

/* variables */
DCL IstCopy TrackList;
DCL i Integer;
DCL tr Trackld;

stCopy:=trackL{

i:=0;

<Cop Emptylist for all tracks

else

—

tr:=first(IstCopy

add the number of
trains between
the sensors

:Fi+trackTbl(tr).copnt;

IstCopy:=
substring(|stCopy,2,length{IstCopy)-1);

L T

Page 42 of 42

