
predefined

/*

SDL-2000 Design Contest
3rd SDL And MSC Workshop

Specification of a Railway Crossing

Jens Brandt
(University of Kaiserslautern)

May 11 2002

*/

RailroadCrossing
system RailroadCrossing

1(1)

Page 1 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

NEWTYPE Character
 LITERALS
 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
 BS, HT, LF, VT, FF, CR, SO, SI,
 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
 CAN, EM, SUB, ESC, FS, GS, RS, US,
 ' ', '!', '"', '#', '$', '%', '&', '''',
 '(', ')', '*', '+', ',', '-', '.', '/',
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', ':', ';', '<', '=', '>', '?',
 '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
 'X', 'Y', 'Z', '[', '\', ']', '^', '_',
 '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
 'x', 'y', 'z', '{', '|', '}', '~', DEL;
 �/* '''' is an apostrophe, ' ' is a space, '~' is a tilde */
 OPERATORS
 chr : Integer -> Character;
 num : Character -> Integer;
 "<" : Character, Character -> Boolean;
 "<=" : Character, Character -> Boolean;
 ">" : Character, Character -> Boolean;
 ">=" : Character, Character -> Boolean;
ENDNEWTYPE Character;

NEWTYPE Charstring String (Character,'')
 ADDING LITERALS
 NAMECLASS '''' ((' ':'&') OR '''''' OR ('(':'~'))+ '''';
ENDNEWTYPE Charstring;

NEWTYPE Duration
 LITERALS
 NAMECLASS (('0':'9')+) OR (('0':'9')*'.'('0':'9')+);
 OPERATORS
 duration!: Real -> Duration;
 "+" : Duration, Duration -> Duration;
 "-" : Duration -> Duration;
 "-" : Duration, Duration -> Duration;
 "*" : Real, Duration -> Duration;
 "*" : Duration, Real -> Duration;
 "/" : Duration, Real -> Duration;
 "<" : Duration, Duration -> Boolean;
 ">" : Duration, Duration -> Boolean;
 "<=" : Duration, Duration -> Boolean;
 ">=" : Duration, Duration -> Boolean;
ENDNEWTYPE Duration;

NEWTYPE Time
 LITERALS
 NAMECLASS (('0':'9')+) OR (('0':'9')*'.'('0':'9')+);
 OPERATORS
 time!: Duration -> Time;
 "<" : Time, Time -> Boolean;
 "<=" : Time, Time -> Boolean;
 ">" : Time, Time -> Boolean;
 ">=" : Time, Time -> Boolean;
 "+" : Duration, Time -> Time;
 "+" : Time, Duration -> Time;
 "-" : Time, Duration -> Time;
 "-" : Time, Time -> Duration;
ENDNEWTYPE Time;

NEWTYPE Boolean
 LITERALS
 true,false;
 OPERATORS
 "not": Boolean -> Boolean;
 "and": Boolean, Boolean -> Boolean;
 "or" : Boolean, Boolean -> Boolean;
 "xor": Boolean, Boolean -> Boolean;
 "=>" : Boolean, Boolean -> Boolean;
ENDNEWTYPE Boolean;

NEWTYPE Integer
 LITERALS
 NAMECLASS ('0':'9')+;
 OPERATORS
 "-" : Integer -> Integer;
 "+" : Integer, Integer -> Integer;
 "-" : Integer, Integer -> Integer;
 "*" : Integer, Integer -> Integer;
 "/" : Integer, Integer -> Integer;
 "mod": Integer, Integer -> Integer;
 "rem": Integer, Integer -> Integer;
 "<" : Integer, Integer -> Boolean;
 ">" : Integer, Integer -> Boolean;
 "<=" : Integer, Integer -> Boolean;
 ">=" : Integer, Integer -> Boolean;
 float: Integer -> Real;
 fix : Real -> Integer;
ENDNEWTYPE Integer;

SYNTYPE Natural = Integer
 CONSTANTS >= 0
ENDSYNTYPE Natural;

NEWTYPE Real
 LITERALS
 NAMECLASS (('0':'9')+) OR (('0':'9')*'.'('0':'9')+);
 OPERATORS
 "-" : Real -> Real;
 "+" : Real,Real -> Real;
 "-" : Real,Real -> Real;
 "*" : Real,Real -> Real;
 "/" : Real,Real -> Real;
 "<" : Real,Real -> Boolean;
 ">" : Real,Real -> Boolean;
 "<=" : Real,Real -> Boolean;
 ">=" : Real,Real -> Boolean;
/* ASN.1 operator: */
 power: Integer, Integer -> Real;
ENDNEWTYPE Real;

NEWTYPE PId
 LITERALS
 null;
 OPERATORS
 unique! : PId -> PId;
ENDNEWTYPE PId;

Package 1(4)predefined

Page 2 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

GENERATOR equality(TYPE item)
 OPERATORS
 "=" : equality, equality -> Boolean;
 "/=": equality, equality -> Boolean;
/*!Z105*/
 encode: equality -> Bitstring;
 encode: equality, Encoding -> Bitstring;
 decode: Bitstring -> equality;
 decode: Bitstring, Encoding -> equality;
/*!Z105END*/
ENDGENERATOR;

GENERATOR ordered(TYPE item)
 OPERATORS
 "<" : ordered, ordered -> Boolean;
 ">" : ordered, ordered -> Boolean;
 "<=" : ordered, ordered -> Boolean;
 ">=" : ordered, ordered -> Boolean;
ENDGENERATOR;

GENERATOR String(TYPE Itemsort LITERAL emptystring)
 /* Strings are "indexed" from one */
 LITERALS
 emptystring;
 OPERATORS
 mkstring : Itemsort -> String;
 length : String -> Integer;
 first : String -> Itemsort;
 last : String -> Itemsort;
 "//" : String, String -> String;
 extract! : String, Integer -> Itemsort;
 modify! : String, Integer, Itemsort -> String;
 substring: String, Integer, Integer -> String;
ENDGENERATOR String;

GENERATOR Powerset(TYPE Itemsort)
 LITERALS
 empty;
 OPERATORS
 "in" : Itemsort, Powerset -> Boolean;
 incl : Itemsort, Powerset -> Powerset;
 del : Itemsort, Powerset -> Powerset;
 "<" : Powerset, Powerset -> Boolean;
 ">" : Powerset, Powerset -> Boolean;
 "<=" : Powerset, Powerset -> Boolean;
 ">=" : Powerset, Powerset -> Boolean;
 "and" : Powerset, Powerset -> Powerset;
 "or" : Powerset, Powerset -> Powerset;
ENDGENERATOR Powerset;

GENERATOR Array(TYPE Index, TYPE Itemsort)
 OPERATORS
 make! : Itemsort -> Array;
 modify! : Array, Index, Itemsort -> Array;
 extract!: Array, Index -> Itemsort;
ENDGENERATOR Array;

Package predefined 2(4)

Page 3 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

/*!Z105*/ /* Don't change this line */
NEWTYPE Bit
 inherits Boolean
 literals 0 = false, 1 = true;
 operators all;
ENDNEWTYPE Bit;

Encoding ::= ENUMERATED{BER,CER,DER,PER};

NEWTYPE Bitstring String0(Bit,''B);
 adding
 literals nameclass('0' or '1')*'B',
 nameclass(('0':'9') or ('A':'F'))*'H';
 operators
 "not": Bitstring -> Bitstring;
 "and": Bitstring, Bitstring -> Bitstring;
 "or" : Bitstring, Bitstring -> Bitstring;
 "xor": Bitstring, Bitstring -> Bitstring;
 "=>" : Bitstring, Bitstring -> Bitstring;
ENDNEWTYPE Bitstring;

SYNTYPE Octet = Bitstring constants size (8)
ENDSYNTYPE Octet;

NEWTYPE Octetstring String(Octet,''B)
 literals nameclass(('0' or '1')8)+'B',
 nameclass((('0':'9') or ('A':'F'))2)+'H';
 operators
 bitstring : Octetstring -> Bitstring;
 octetstring : Bitstring -> Octetstring;
 Bit_String : Octetstring -> Bitstring; /* SDL 96 version */
 Octet_String : Bitstring -> Octetstring; /* SDL 96 version */
ENDNEWTYPE Octetstring;

syntype Octet_String = Octetstring endsyntype;
syntype Bit_String = Bitstring endsyntype;

NEWTYPE NULL
 literals null;
ENDNEWTYPE NULL;

NEWTYPE Object_element
 literals nameclass ('0':'9')+;
ENDNEWTYPE Object_element;

NEWTYPE Object_identifier String(Object_element,emptystring)
ENDNEWTYPE Object_identifier;

NEWTYPE Any_type
ENDNEWTYPE Any_type;

GeneralizedTime ::= Visiblestring;
ATCTime ::= Visiblestring;
UTCTime ::= Visiblestring;
EXTERNAL_Type ::= sequence
 { direct_reference Object_identifier optional,
 indirect_reference Integer optional,
 data_value_descriptor ObjectDescriptor optional,
 encoding choice { single_ASN1_type Any_type,
 octet_aligned Octetstring,
 arbitrary Bitstring
 }
 };
ObjectDescriptor ::= Graphicstring;

/*!Z105*/ /* Don't change this line */
/* ASN.1 types */
SYNTYPE
 IA5String = Charstring
ENDSYNTYPE;

SYNTYPE
 NumericString = Charstring (from ("0".."9"))
ENDSYNTYPE;

SYNTYPE
 Printablestring = Visiblestring
ENDSYNTYPE;

SYNTYPE
 Visiblestring = Charstring (from
("A".."Z"|"a".."z"|"0".."9"|"'",'(',')','+',',','-','.','/',':','=','?'))
ENDSYNTYPE;

NEWTYPE Graphicstring
 inherits Charstring
 operators all;
ENDNEWTYPE Graphicstring;

NEWTYPE Universalstring
 inherits Charstring
 operators all;
ENDNEWTYPE Universalstring;

NEWTYPE Enumeration
 operators
 pred : Enumeration -> Enumeration;
 succ : Enumeration -> Enumeration;
 first : Enumeration -> Enumeration;
 last : Enumeration -> Enumeration;
 num : Enumeration -> Integer;
 "<" : Enumeration, Enumeration -> Boolean;
 "<=" : Enumeration, Enumeration -> Boolean;
 ">" : Enumeration, Enumeration -> Boolean;
 ">=" : Enumeration, Enumeration -> Boolean;
ENDNEWTYPE Enumeration;

SYNONYM PLUS_INFINITY Real = external;
SYNONYM MINUS_INFINITY Real = external;

Package predefined 3(4)

Page 4 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

/***** ASN.1 GENERATORS *****/
GENERATOR String0(TYPE Itemsort, LITERAL Emptystring)
 String(Itemsort,Emptystring)
ENDGENERATOR;

GENERATOR Bag(type Itemsort)
 literals Empty;
 operators
 incl : Itemsort, Bag -> Bag;
 del : Itemsort, Bag -> Bag;
 length : Bag -> Integer;
 take : Bag -> Itemsort;
 makebag: Itemsort -> Bag;
 "in" : Itemsort, Bag -> Boolean;
 "<" : Bag, Bag -> Boolean;
 ">" : Bag, Bag -> Boolean;
 "<=" : Bag, Bag -> Boolean;
 ">=" : Bag, Bag -> Boolean;
 "and" : Bag, Bag -> Bag;
 "or" : Bag, Bag -> Bag;
ENDGENERATOR;

/*!SDL2000*/ /* Don't change this line */
exception
 OutOfRange, /* A range check has failed. */
 InvalidReference, /* Null was used incorrectly. Wrong Pid for this signal. */
 NoMatchingAnswer, /* No answer matched in a decision without else part. */
 UndefinedVariable, /* A variable was used that is "undefined". */
 UndefinedField, /* An undefined field of a choice or struct was accessed. */
 InvalidIndex, /* A String or Array was accessed with an incorrect index. */
 DivisionByZero, /* An Integer or Real division by zero was attempted. */
 Empty; /* No element could be returned. */

Package predefined 4(4)

Page 5 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

/* track layout */

synonym posSensor1 Real=3000;
 /* position of the "approaching sensor" */
synonym posSignal Real=4000;
 /* position of the "signal" */
synonym posSensor2 Real=4500;
 /* position of the "leaving sensor" */
synonym posEnd Real=5000;
 /* end of the track*/

/* track parameters */

synonym fastSpeed Real=80;
 /* maximal speed of fast trains*/
synonym regularSpeed Real=50;
 /* maximal speed of regular trains*/

/* signal definitions */

signal openGate;
signal closeGate;
signal gateOpen;
signal gateClosed;

signal trainApproaching(TrackId);
signal trainLeaving(TrackId);
signal detectLeaving(TrackId);
signal detectApproaching(TrackId);

signal trainSignal(SignalStatus);
signal setSignals(TrackList, SignalStatus);
signal settingDone(TrackList, SignalStatus);
signal leaving;

signal carsWaiting;
signal manyCarsWaiting;

signal trackAnnounce(TrackId,Real);
signal inSight(TrackId,PId);
signal position(Real,Real);

/* signallist definitions */

signallist trainSensor=detectApproaching, detectLeaving;
signallist trainDetection=trainApproaching, trainLeaving;
signallist carSensor=carsWaiting, manyCarsWaiting;
signallist gateControl=closeGate,openGate;
signallist gateStatus=gateClosed, gateOpen;

1(2)Package RailroadCrossing

Page 6 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

/* general purpose procedures*//* type definitions */

/* signal status */
value type SignalStatus;
 literals red, green
endvalue type;

/* track identifier */
syntype
 TrackId=PId
endsyntype;

/* list of all tracks */
syntype
 TrackList=String(TrackId,Emptylist)
endsyntype;

/* information about a track */
value type TrackInfo
 struct
 speed Real; /* maximal speed */
 count Integer; /* number of trains between the sensors*/
 sight PId; /* trains which ist in range of sight of signal */
 sig SignalStatus; /* signal status */
endvalue type;

syntype
 TrackTable=Array(TrackId,TrackInfo)
endsyntype;

minmax

2(2)Package RailroadCrossing

Page 7 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

val>upperBound

val:=upperBound;

val:=lowerBound;

val

val<lowerBound

1(1)Procedure

fpar lowerBound Real, upperBound Real, val Real; returns Real

minmax

false

false

true

true

Page 8 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

(gateControl)

synonym nrTracks Integer=4;
 /* number of tracks */

(carSensor), (gateStatus)

(gateControl)

theCrossing(1)

use RailroadCrossing;

trainSignal

(trainSensor), inSight, trackAnnounce

Track
theTracks(nrTracks):Track

theController(1)

1(1)System RailroadCrossing

TrackChannel

g1

CrossingChannel

PanelChannel

Page 9 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

(gateStatus)

(carSensor)

theCarSensor(1,1)

(gateStatus)

(gateControl)

theGate(1,1)

1(1)Block theCrossing

S2

CrossingChannel

S1

S3

Page 10 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

all waiting cars
pass the crossing

--

cars:=0

gateClosed:=false gateClosed:=true

gateClosedgateOpen

detecting

set(t1);

*

synonym arrival Duration=30;
 /* delay between the cars */
synonym threshold Integer=2;
 /* minimum #cars the sensors detects */
synonym manyThreshold Integer=10;
 /* indication: too many cars */

/* timer */

timer t1:=arrival;

/* variables */

DCL cars Integer:=0;
DCL gateClosed Boolean:=true;

1(2)Process theCarSensor

Page 11 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

detecting

manyCarsWaiting

threshold

cars

cars:=cars+1;

-

t1

carsWaiting

set(t1);

cars else

manyThreshold

else

approaching car
must wait

too many cars
are waiting

gateClosed

true

false

2(2)Process theCarSensor

Page 12 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

initially the
gate is closed

gateClosed
via S3

/* timers */
timer t1;

gateClosed
via S2

-

closeGate

gateClosed
via S2

opening

set
(NOW+openingTime,t1)

openGate

closing

t1

closed

gateClosed
via S2

set
(NOW+openingTime,t1)

opening

openGate

closed

synonym openingTime Duration=30;
 /* time to open the gate */
synonym closingTime Duration=30;
 /* time to close the gate */

closed

1(2)Process theGate

Page 13 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

cars are not allowed
to pass while closing
the gate

gateOpen
via S3

gateClosed
via S3

opening

t1

open

gateOpen
via S2

closeGate

set
(NOW+closingTime,t1)

closing

set
(NOW+closingTime,t1)

open

closeGate

closing

gateOpen
via S2

-

openGate

2(2)Process theGate

Page 14 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

(trainSensor), trackAnnounce

trainSignal

trainSignal

(trainSensor), inSight, trackAnnounce

inSight

synonym nrTrains Integer=3;
 /* maximum number of trains per track */

position

theSensor(1,1)aTrain(0,nrTrains)

1(1)Block Type Track

S0

S1

g1

S2

Page 15 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

create the first train
(at an arbitrary time)

announce the track
to the controller

get a unique track id

startTrain

none

trackAnnounce
(trackId,maxSpeed)

/* variables*/

DCL maxSpeed Real;
 /* maximum speed for this track */
DCL trackId TrackId;
 /* unique track identifier */

trackId:=self;

detecting

aTrain
(trackId,maxSpeed,true)

ANY

maxSpeed:=
fastSpeed;

maxSpeed:=
regularSpeed;

1(2)Process theSensor

Page 16 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

train is passing second sensor

train is passing first sensor

train at position (p1,p2)

/* variables*/

DCL p1,p2 Real;
 /* position of the train */

detectLeaving
(trackId)

detectApproaching
(trackId)

false

p1 < posSensor2
AND posSensor2 <=p2

detectLeaving
(trackId)

true

true

detectApproaching
(trackId)

false

-

p1 < posSensor1
AND posSensor1 <= p2

position(p1,p2)

detecting

2(2)Process theSensor

Page 17 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

pos:=0;
speed:=0;

accel:=maxAccel;

/* extend input alphabet */

signalset position;
 /* inter train communication */

inSight(track,self)

requestSig

lastStep:=NOW;

synonym maxAccel Real=3;
 /* maximum acceleration */
synonym minAccel Real=-10;
 /* maximum brake acceleration */
synonym minSpeed Real=0;
 /* minimum speed */
synonym minDist Real=100;
 /* minimum distance between the trains */

set
(lastStep+stepTime, step)

enRoute

/* timer */

timer step;
DCL lastStep Time;
synonym stepTime Duration=10;

/* variables */

DCL pos, posX Real;
 /* current position */
DCL pposX, ppos Real :=-1;
 /* current position of previous train */
DCL speed Real;
 /* current speed */
DCL accel Real;
 /* current acceleration */
DCL sigAccel Real:=maxAccel;
 /* maximum acceleration permitted by the signal */
DCL nextTrain PId:=null;
 /* next train */
DCL rs Boolean:=false;
 /* next train has to request signal */
DCL handoverDone Boolean:=false;
 /* handing over of signal notification done */

1(4)Process

fpar track TrackId, maxSpeed Real, requestSig Boolean;

aTrain

false true

Page 18 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

hands over signal
notification to the
next train

handover

handover

calculates minimum
braking distance

calculates position,
speed, acceleration

breakingDist

possible to stop
in front of the signal
or handing over of signal
already done

create next train
before leaving the track

update current acceleration,
speed and position

nextTrain

aTrain
(track,maxSpeed,rs)

-

pos>posEnd true

handoverDone or
(posSignal-pos)> (call breakingDist)

position(posX,pos)
to theSensor

position(posX,pos)
to nextTrain

nextTrain

else

update

update

enRoute

set
(NOW+stepTime, step)

step

2(4)Process aTrain

fpar track TrackId, maxSpeed Real, requestSig Boolean;

null

false

else

null

false

true

Page 19 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

maximum brake force

immediately react to signal changes

-

sigAccel:=minAccel;sigAccel:=maxAccel;

DCL sig SignalStatus;

sig

trainSignal(sig)

*

3(4)Process aTrain

fpar track TrackId, maxSpeed Real, requestSig Boolean;

green red

Page 20 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

create next train

position of
previous train

aTrain
(track,maxSpeed,rs)

nextTrain:=offspring

-

nextTrain=null

none

*

-

position(pposX,ppos)

*

4(4)Process aTrain

fpar track TrackId, maxSpeed Real, requestSig Boolean;

Page 21 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

handoverDone:=true;

null

rs:=true;

nextTrain

inSight
(track,nextTrain)

hand over signal notification
to the next train

next train not yet created
-> it has to request signal

1(1)Procedure handover

else

Page 22 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

simulate braking

calculate braking distance

dist

sp:=sp+minAccel;

dist:=dist+sp;

sp

/* variables */

DCL sp, dist Real;

sp:=speed;
dist:=0;

1(1)Procedure

returns Real

breakingDist

>0 else

Page 23 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

calculate current position

calculate current speed

acceleration is limited by signal status
and brake force

calculation maximum possible acceleration
(no previous train - maximum acceleration)

calculating maximum possible acceleration
(respecting position and speed of
previous train to prevent a collision

accel:=maxAccel;

accel:=
call minmax(minAccel,sigAccel, accel);

ppos

accel:=
(ppos-pos)+(ppos-pposX-speed)-minDist;

posX:=pos;

speed:=speed+accel;
speed:=

call minmax(minSpeed,maxSpeed,speed);

pos:=pos+speed;

1(1)Procedure update

else

-1

Page 24 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

Controller

(gateControl)

(gateStatus), (carSensor)

(gateControl)

(trainSensor), inSight, trackAnnounce

trainSignal

theController(1,1):Controller

1(1)Block theController

S2

g2

TrackChannel

S1

g1

CrossingChannel

S3
g3

PanelChannel

Page 25 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

ManyCarsPrecedenceController cars take precedence,
if there are too many waiting

all trains take precedenceTrainsPrecedenceController

FastTrainsPrecedenceController regular trains wait for
fast trains

leaving

basic functionality
of all controllers

(gateControl)(gateStatus),(carSensor)

(gateControl)

settingDone

setSignals

(trainDetection)

trainSignal

trackAnnounce,
inSight

trainSignal

(trainSensor)

(gateStatus),(carSensor)
trackAnnounce, inSight, (trainSensor)

(gateControl)
trainSignal

(gateControl)

theSignalControltheSensorDebouncer

theCentralController:
FastTrainsPrecedenceController

BasicControllerDCL trackLst TrackList:=Emptylist;
 /* tracks of the system */

DCL trackTbl TrackTable:=(. (. 0,0,null,green .) .);
 /* information about all the tracks */

1(1)Process Type Controller

g3g2
g1

S6 S3

g3

S7

S2

g2

S4

g4
S1

g1

S5

g5

S8

Page 26 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

/* timer */

timer t1:=closureTime;

number of trains
between the sensors
(should be 0 due to
change C1)

a lot of cars
are waiting

switchTrainsswitchBoth

else0

trainsboth

call totalCount

t1

cars

synonym closureTime Duration=30;
 /* closure time of the gate */

switchCars

cars

redefined
manyCarsWaiting

*

set(t1)

1(1)Service Type

inherits TrainsPrecedenceController

ManyCarsPrecedenceController

Page 27 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

switchBoth

both

redefined

initially the gate is open
and all signals are green

first train
approaching

total number of trains
(all tracks) between
the sensors

switchBoth switchTrains

trains

trackTbl(track).count:=
trackTbl(track).count+1;

redefined
trainApproaching(track)

both

else

-

0

call totalCount

both

trackTbl(track).count:=
trackTbl(track).count-1;

redefined
trainLeaving(track)

trains

1(1)Service Type

inherits BasicController

TrainsPrecedenceController

Page 28 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

switchCars

0

set(t1)

cars

call totalCount

fast

else

trains

switchFast

redefined
 carsWaiting

switchCars

else

-

0

call totalCount

cars

trackTbl(track).count:=
trackTbl(track).count-1;

redefined
trainLeaving(track)

fast

total number of trains
(all tracks) between
the sensors

set(t1)

switchTrains

trains

t1

cars

/* timer */

timer t1:=closureTime;

synonym closureTime Duration=120;
 /* closure time of the gate */

signals of regular tracks
to red, close the gate

switchFast

returns all
regular tracks

regularTracks

1(1)Service Type

inherits BasicController

FastTrainsPrecedenceController

Page 29 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

tr:=call regularTracks;

wait until the gate
has been closed

close the gate

gateClosed

waiting

*

closeGate
via g1

set all stopping signals
of regular Tracks

wait until all signals
have been set

tr=tr2
and st=red

/* variables */

DCL tr, tr2 TrackList;
DCL st SignalStatus;

setSignals
(tr,red)

waiting2

*settingDone(tr2,st)

1(1)Procedure switchFast

false

true

Page 30 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

trackTbl(tr).speed=fastSpeed

add the tracks to
the list

for all tracks

tr:=first(lstCopy);

regular:=
regular//mkstring(tr);

Emptylist

/* variables */

DCL lstCopy TrackList;
DCL regular TrackList;
DCL tr TrackId;

regular

else

lstCopy:=
substring(lstCopy,2,length(lstCopy)-1);

lstCopy

lstCopy:=trackLst;
regular:=Emptylist;

1(1)Procedure

returns TrackList

regularTracks

truefalse

Page 31 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

for all signals
in the list lstCopy

signal will
be set later

signal can
be set

set a signal

not all signals have
been set, waiting
for a leaving train

leaving

waiting

idle

settingDone
(tracks, sigStatus)

setSignals
(toDo, sigStatus)

idle

else

toDo

waiting

false

toDo:=toDo//mkstring(tr);

Emptylist

true

trackTbl(tr).count=0
or sigStatus=green

lstCopy:=toDo;
tracks:=toDo;

toDo:=Emptylist;

lstCopy

lstCopy:=
substring(lstCopy,2,length(lstCopy)-1);

else

/* variables */

DCL tracks TrackList;
 /* tracks to set */
DCL lstCopy TrackList;
 /* current tracks */
DCL toDo TrackList;
 /* remaining tracks*/
DCL tr TrackId;
 /* current track */
DCL sigStatus SignalStatus;
 /* desired signal status */

tr:=first(lstCopy);

setSignal
(tr,sigStatus)

setSignal

1(1)Service theSignalControl

Emptylist

Page 32 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

trackTbl(tr).sight

trainSignal(sigstat)
 to trackTbl(tr).sight

trackTbl(tr).sig:=sigstat;

1(1)Procedure

fpar tr TrackId, sigstat SignalStatus;

setSignal

else null

Page 33 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

sensor signals
in the next threshold
time units will not be
passed to
theCentralController

no sensor signal
for at least
threshold time units

wake up
theSignalControl

leaving

/* timer */
timer t1(TrackId);
timer t2(TrackId);

/* variables */
DCL track TrackId;

idle

set(NOW+threshold,
t2(track))

set(NOW+threshold,
t1(track));

t1(track)

trainApproaching
(track)

t2(track)

trainLeaving
(track)

synonym threshold Duration=1;
 /* debouncing threshold */

detectLeaving
(track)

-

detectApproaching
(track)

1(1)Service theSensorDebouncer

Page 34 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

append track to track list,
set speed information in table

initially the gate is closed
and all signals are green

trackAnnounce,
inSight

trainSignal

-

trackAnnounce(track, speed)

*

trackLst:=trackLst // mkstring(track);
trackTbl(track).speed:=speed;

settingDone

/* variables */

DCL train PId;
DCL track TrackId;
DCL speed Real;

setSignals

(gateControl)(gateStatus),
(carSensor)

(gateControl)

(trainDetection)

trains

virtual

1(4)Service Type BasicController

g2g1 g5g4g3

Page 35 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

null

else

train

update table entrytrackTbl(track).sight:=train;

-

inSight(track,train)

*

trainSignal(trackTbl(track).sig)
to trackTbl(track).sight

handover requested

send signal status to
train which is now in
range of sight

2(4)Service Type BasicController

Page 36 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

returns total number of trains
(all tracks) between the sensors

signals to red, open the gate

open the gate, signals to green

close the gate, signals to green

standard behaviour

switchTrains

switchBoth

switchCars

totalCount

--

virtual
manyCarsWaiting

virtual
carsWaiting

-

trackTbl(track).count:=
trackTbl(track).count+1

trackTbl(track).count:=
trackTbl(track).count-1

virtual
trainLeaving(track)

*

virtual
 trainApproaching(track)

-

3(4)Service Type BasicController

Page 37 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

safe to open the gate

-

call totalCount

"manual open" request

"manual close" request

cars

switchCars

trains

openGate

switchTrains

trains

closeGate

cars,both

4(4)Service Type BasicController

0 else

Page 38 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

finally clear all
stopping signals

wait until the gate
has been closed

close the gate

setSignals
(trackLst,green)

closeGate
via g1

*

waiting

gateClosed

1(1)Procedure switchTrains

Page 39 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

clear all
stopping signals

open the gate

setSignals(trackLst,green)

openGate
via g1

1(1)Procedure switchBoth

Page 40 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

set all stopping signals

wait until all signals
have been set

tr=trackLst
and st=red

DCL tr TrackList;
DCL st SignalStatus;

setSignals(trackLst,red)

waiting2

*settingDone(tr,st)

open the gate
(C1: no trains
between the sensors)

openGate
via g1

1(1)Procedure switchCars

true

false

Page 41 of 42

Tuesday, June 18, 2002 [RailwayCrossing.cbf]

add the number of
trains between
the sensors

for all tracks

lstCopy:=trackLst;
i:=0;

lstCopy

lstCopy:=
substring(lstCopy,2,length(lstCopy)-1);

else

i

/* variables */

DCL lstCopy TrackList;
DCL i Integer;
DCL tr TrackId;

Emptylist

i:=i+trackTbl(tr).count;

tr:=first(lstCopy);

1(1)Procedure

returns Integer

totalCount

Page 42 of 42

