
1

Tutorial on Message Sequence Charts

Ekkart Rudolpha, Peter Graubmannb, and Jens Grabowskic

aTechnical University of Munich, Institute for Informatics, Arcisstrasse 21,

D-80290 M�unchen, Germany, eMail: rudolphe@informatik.tu-muenchen.de

bSiemens AG, ZFE T SE, Otto-Hahn-Ring 6, D-81739 M�unchen, Germany,

eMail: gr@zfe.siemens.de

cMedical University of L�ubeck, Institute for Telematics, Ratzeburger Allee 160,

D-23538 L�ubeck, Germany, eMail: jens@itm.mu-luebeck.de

An introduction to the ITU standard language Message Sequence Chart (MSC) is pro-

vided. It is pointed out that MSC in many respects is complementary to the ITU speci�-

cation and design language SDL. MSC in combination with SDL or other languages, now

plays a role in nearly all stages of the system development process. Since MSC has been

standardized in the same study group as SDL, the language form is quite analogous, e.g.

it has a graphical (MSC/GR) and a textual (MSC/PR) syntax form. The MSC language

in the present recommendation Z.120 (MSC'92), comprises basic language elements - in-

stance, message, environment, action, timer, process creation and termination, condition

- and structural language elements - coregion and submsc. It is demonstrated how global

and non-global conditions may be used for the composition of MSCs. Whereas in MSC'92

main emphasis is put on the elaboration of basic concepts and a corresponding formal

semanrics, in the new MSC version (MSC'96) structural language constructs, essentially

composition and object oriented concepts, will play a dominant role. With these new con-

cepts, the power of MSC is enhanced considerably in order to overcome the traditional

restriction of MSC to the speci�cation of few selected system runs.

Keywords: MSC, SDL, object oriented modelling, composition techniques, system en-

gineering, requirement speci�cation.

1. Introduction

Message Sequence Charts (MSCs) are a widespread means for the visualization of selected

system runs (traces) within communication systems. MSC can be viewed as a special trace

language which mainly concentrates on message interchange by communicating entities

(such as SDL services, processes, blocks) and their environment. A main advantage of

an MSC is its clear graphical layout which immediately gives an intuitive understanding

of the described system behaviour. MSCs have been used informally for a long time by

ITU (former CCITT) Study Groups in their recommendations and in industry. Their

standardization was suggested at the 4.th SDL Forum October 1989 in Lisbon [7] and



2

agreed upon at the ITU-meeting Helsinki, June 1990 [4]. At the closing session of the

ITU study period 1989-1992 in Geneva, May 1992, the new MSC recommendation Z.120

[19] was approved. Within the present study period, as a major achievement, a formal

semantics for MSCs based on process algebra has been standardized [20]. A standard

document on static syntax requirements is in preparation [15]. Besides formal semantics

main emphasis is put on structural concepts [8,9].

The reason to standardize MSCs was to allow systematic tool support, to facilitate the

exchange between di�erent tools, and to ease the mapping to and from SDL speci�cations.

Due to the standardization, the importance of MSCs for system engineering has increased

considerably. Accordingly, MSCs are used

� for requirement de�nition [7,18],

� as an overview speci�cation of process communication [18],

� as an interface speci�cation [18],

� as a basis for automatic generation of skeleton SDL speci�cations [7],

� for simulation and consistency check of SDL speci�cations [1,2,13,14],

� as a basis for selection and speci�cation of test cases [5,6],

� for documentation [7],

� for object oriented design and analysis (object interaction) [12].

2. Why yet another Speci�cation Language?

One way to understand the meaning and the usefulness of MSCs may be by relating them

to other speci�cation languages like SDL, LOTOS or Petri Nets. In practice, the MSC

language is used most frequently in connection with SDL and indeed, in addition, it also

has been standardized in the same ITU-T study group as SDL. What was the reason for

the introduction of yet another standard language besides SDL? SDL processes and MSCs

can be looked at as two di�erent kinds of system representations which are complemen-

tary in many respects. SDL provides a clear and comprehensive behaviour description

within individual SDL processes, whereas the communication between several processes

is represented in a fairly indirect manner and thus the description of the communication

behaviour in SDL for many purposes is not su�ciently transparent. Contrary to that,

MSCs focus on the communication behaviour of system components and their environ-

ment by means of message exchange. MSCs provide a clear description of system traces

in form of message ow diagrams. In contrast to SDL, the set of speci�ed MSCs usually

covers a partial system behaviour only since each MSC represents exactly one scenario.

So, candidates for MSCs are primarily the standard cases. These standard cases may

be supplemented by MSCs describing exceptional behaviour altogether providing a use

case like representation [12]. Recently, attempts have been made to enhance the language

and to make a fairly comprehensive system description feasible by using composition and

object oriented techniques. Most certainly, however, the main importance of MSCs also

in the future will not lie in complete system descriptions but rather in the speci�cation

of special system properties, e.g., of certain system runs which should be allowed or, the

other way round, which should be disallowed. More generally, MSCs have been proposed



3

for the intuitive representation of temporal logics expressions. Within the system develop-

ment process, MSCs play a role in nearly all stages (see Chapter 1) complementing SDL in

many respects. In all cases, the strength of MSCs lies in the clear and intuitive description

of selected system runs whereas SDL is used for a complete system speci�cation.

It should be pointed out that the usual incompleteness of MSCs does not mean that they

have only informal, i.e., illustrative character within a system development. Their role

may very well be formalized, e.g., MSCs may represent test purposes for the automatic

generation of test cases as it is done within the SAMSTAG method [5,6].

For an illustration of the relation between SDL and MSC, in the following, we use

the Inres service speci�cation as a standard example [10]. Let us consider the MSC

conreq in Figure 1 which describes a selected trace piece of the connection set-up in the

Inres service speci�cation: An Initiator-user sends a connection request (ICONreq) to

the Initiator. The Initiator transmits the request (ICON) to the Responder entity which

afterwards indicates the connection request (ICONind) to its user. The MSC is related to

corresponding paths in SDL process diagrams (Figure 2) where the path corresponding

to the MSC in Figure 1 is indicated by bold arrows. Obviously, the trace described by

the MSC can be represented also in form of SDL diagrams.

The correspondence between Figure 1 and Figure 2 may serve to give a good intuitive

idea about the meaning but also the usefulness of MSCs. It also demonstrates that an

MSC describing one possible scenario can be viewed as an SDL skeleton [7,18]. Obviously,

the MSC in Figure 1 is far more transparent than Figure 2, since it concentrates on

the relevant information, namely the instances (Initiator, Responder) and the messages

involved in the selected trace piece (ICONreq, ICON, ICONind).

3. The MSC Language

3.1. MSC/PR and MSC/GR

In analogy to the SDL recommendation Z.100 [17] the new MSC recommendation Z.120

[19] includes two syntactical forms, MSC/PR as a pure textual and MSC/GR as a graphi-

cal representation. An MSC in MSC/GR representation can be transformed automatically

into a corresponding MSC/PR representation. The other way round, the same problems

arise as in SDL since MSC/PR (like SDL/PR) does not include graphical information

such as height, width, or alignment of symbols and texts. An example of the MSC/GR

and the corresponding MSC/PR representation is shown in Figure 3.

The MSC/PR presently contained in Z.120, lists message sending and receiving events

in association with an instance. Recently, a better readable notation was requested, in

particular in cases where MSC/PRs were not only used internally by tools, but also edited

by humans. Thus, a new event oriented textual representation was elaborated [3,11] where

events are listed in form of a possible execution trace and not ordered with respect to

instances. The event oriented textual grammar is closer to the graphical grammar than

the instance oriented syntax and details concerning the graphical representation are ex-

pressible contrary to the present instance oriented textual syntax. This is particularly

important for applications where an MSC semantics variant is preferred describing global

event ordering, i.e., a global time scale, in contrast to the present partial ordering interpre-

tation of MSC diagrams. Such applications arise in case of validation, tracing, debugging,



4

ICONreq
ICON

Initiator
process

ISAP_Manager_Ini
process

ISAP_Manager_Res

Responder

msc conreq

ICONind

Figure 1. Connection Request

DISCONNECTED

WAIT

DISCONNECTED

WAIT

DISCONNECTED

IDAT(D)

IDIS

DISCONNECTED

ICONreq

ICONICONIDISind

SET
 (NOW+5,T)

ICONind

any

Initiator Responder

Figure 2. SDL-diagram corresponding to the MSC in Figure 1

ICONind

ICONresp

process
ISAP_Manager_Res

ResponderInitiator
process

ISAP_Manager_Ini

msc

ICONreq
ICON

ICONF
ICONconf

connection

msc connection;

inst Initiator, Responder;

instance Initiator: process ISAP Manager Ini;

in ICONreq from env;

out ICON to Responder;

in ICONF from Responder;

out ICONconf to env;

endinstance;

instance Responder: process ISAP Manager Resp;

in ICON from Initiator;

out ICONind to env;

in ICONresp from env;

out ICONF to Initiator;

endinstance;

endmsc;

Figure 3. MSC in MSC/GR and in the corresponding MSC/PR



5

simulation, and test case speci�cation. Consequently, a PR-GR transformation is easier

(less ambiguous) for the event oriented than for the instance oriented textual grammar.

Furthermore, the event oriented grammar is demanded within special stages of system

development: it is particularly applied when execution sequences from, e.g., simulations,

have to be recorded. For the example of Figure 3 the following event oriented textual

syntax description is obtained:
msc connection;

inst Initiator, Responder;

Initiator: instancehead process ISAP Manager Ini;

Responder: instancehead process ISAP Manager Resp;

Initiator: in ICONreq from env;

Initiator: out ICON to Responder;

Responder: in ICON from Initiator;

Responder: out ICONind to env;

Responder: in ICONresp from env;

Responder: out ICONF to Initiator;

Initiator: in ICONF from Responder;

Initiator: out ICONconf to env;

Initiator: endinstance;

Responder: endinstance;

endmsc;

In order to be able to combine the advantages of both textual syntax forms a mixture of

syntax forms is allowed.

3.2. Basic Language Elements

The basic language of MSCs includes all constructs which are necessary in order to specify

the pure message ow. For MSCs these language constructs are instance, message, en-

vironment, action, timer set, timer reset, time-out, instance creation, instance stop, and

condition.

3.2.1. Instances and Messages

The most fundamental language constructs of MSCs are instances (e.g., entities of SDL

systems, blocks, processes, or services) and messages describing the communication events.

In the graphical representation, instances are shown by vertical lines or, alternatively, by

columns (Figure 3). Within the instance heading an entity name, e.g., process type, may

be speci�ed in addition to the instance name.

The message ow is presented by arrows which may be horizontal or with a downward

slope with respect to the direction of the arrow to indicate the ow of time. In addition,

the horizontal arrow lines may be bended to admit message overtaking or crossing (Figure

5b). The head of the message arrow denotes the eventmessage consumption, the opposite

end the event message sending. In addition to the message name, message parameters in

parentheses may be assigned to a message (Figure 4).

Along each instance axis a total ordering of the described communication events is

assumed. Events of di�erent instances are ordered only via messages, since a message

must be sent before it is consumed.

3.2.2. System Environment

Within an MSC, the system environment is graphically represented by the frame symbol

which forms the boundary of an MSC diagram. In contrast to instances, no ordering of



6

Medium_Service
block

Medium

Initiator
block

Ini_Station

Responder
block

Resp_Station

ICONreq

msc Action_Example

Counter = 1

MDATreq(CR)

ICONind
MDATind(CR)

ICONresp

ICONconf
MDATind(CC)

MDATreq(CC)

Figure 4. Action

ICONreq

T

IDISind

Initiator
process

ISAP_Manager_Ini
process

ISAP_Manager_Res

Responder

msc

ICON
ICONind

Time-out

(a) Time-out

Initiator
process

ISAP_Manager_Ini
process

ISAP_Manager_Res

Responder

msc

ICONind

IDISreq

Timer-Reset

IDIS

IDISind

T

ICONreq
ICON

(b) Timer Reset

Figure 5. MSC timer constructs

communication events is assumed within the environment.

3.2.3. Actions

In addition to message exchange, actions describing an internal activity of an instance

may be speci�ed. An action is graphically represented by a rectangle containing arbitrary

text (Figure 4).

3.2.4. Timer

Timer handling in MSCs encloses the setting of a timer and a subsequent time-out (timer

expiration) or the setting of a timer and a subsequent timer reset (time supervision).

The corresponding MSC/GR constructs are shown in Figure 5. The new timer symbols,

di�ering from the graphical symbols de�ned in Z.120, have been requested and elaborated

within the present study period. They will be part of MSC'96 [11].

The individual timer constructs (timer setting, reset/timeout) may be split between dif-

ferent MSCs in cases where the whole scenario is obtained from the composition of several



7

process

msc Creation-termination

Control_Mgr

Controller

process
Call_Mgr

Call_contoller

ICONind

Failure(failure)
ALERT(failure)

CONreq

DISind(failure)

Figure 6. Instance creation and termination

MSCs (cf. Section 3.4). The setting of a timer is represented by an hour-glass connected

with the instance axis by a (bended) line symbol. The reset symbol is presented by a

cross (X), again connected with the instance axis by a (bended) line symbol. Time-out is

described by an arrow which is connected to the hour-glass symbol. An (optional) timer

description containing name and duration may be associated with each timer symbol. In

complete system descriptions, for each timer setting a corresponding time-out or timer re-

set, respectively, has to be speci�ed and vice versa. The corresponding symbols, however,

do not necessarily appear within the same MSC.

3.2.5. Creation and Termination of Instances

Creation and termination of instances within communication systems are quite common

events. This is due to the fact that most communication systems are dynamic systems

where instances appear and disappear during system run time. Consequently, a system de-

signer needs features to describe such events. The corresponding MSC language elements

are shown in Figure 6. The create symbol is a dashed arrow which may be associated

with textual parameters. A create arrow originates from a parent instance and points at

the instance head of the child instance. Correspondingly to messages, a create event may

be labeled with a parameter list.

An instance can terminate by executing a process stop event. Execution of a process

stop is allowed only as last event in the description of an instance. The termination of an

instance is graphically represented by a stop symbol in form of a cross at the end of the

instance axis (Figure 6).

3.2.6. Conditions

A condition describes a state referring to a non-empty set of instances speci�ed in the

MSC. A condition either describes a global system state referring to all instances con-

tained in the MSC, in the following called global condition, or a state referring to a subset

of instances, also called non-global condition. If it refers to one instance only, a condition

is called local. Conditions can be used to emphasize important states within an MSC or

for the composition and decomposition of MSCs (Section 3.4). In the MSC/GR represen-

tation local, global and non-global conditions are represented by hexagons covering the

instances involved (Figure 8).

In the textual representation the condition has to be de�ned on every instance it refers



8

to, using the keyword condition together with the condition name. If the condition refers

to more than one instance the keyword shared together with an instance list denotes the

set of instances to which the condition is attached. By means of the keyword shared all,

a condition referring to all instances may be de�ned.

3.3. Structural Language Elements

The structural language elements of MSCs include all constructs which can be used to

specify more general MSCs or to re�ne MSCs. The current MSC recommendation o�ers

the coregion and the submsc constructs.

3.3.1. Coregion

Along an MSC instance, normally a total ordering of message events is assumed. This may

not be appropriate for MSC instances referring to a level higher than SDL processes. To

cope with this, a coregion is introduced. A coregion is graphically represented by a dashed

section of an MSC instance. Within a coregion, the speci�ed communication events are

not ordered. At present, only message events may be speci�ed within a coregion, however,

a coregion may contain an arbitrary mixture of message inputs and outputs (Figure 7).

3.3.2. Submsc

Since MSCs can be rather complex, there is a need for a re�nement of one instance by a

set of instances de�ned in another MSC.

An MSC instance can be re�ned by another MSC, which is then called submsc. By

means of the keyword decomposed a submsc with the same name is attached to the re-

�ned instance. The submsc represents a decomposition of this instance without a�ecting

its observable behaviour. The messages addressed to and coming from the exterior of the

submsc are characterized by the messages connected with the submsc border (frame sym-

bol). Their connection with the external instances is provided by the messages sent and

consumed by the corresponding decomposed instance, using message name identi�cation.

It must be possible to map the external behaviour of the submsc to the messages of the

decomposed instance. The ordering of message events speci�ed along the decomposed

instance must be preserved in the submsc.

Actions and conditions within a submsc may be looked at as a re�nement of actions and

conditions in the decomposed instance. Contrary to messages, however, no formal map-

ping to the decomposed instance is assumed, i.e., the re�nement of actions and conditions

needs not obey formal rules. Figure 7 shows the re�nement of the instance Inres service

by a submsc.

3.4. Composition of MSCs

Since one MSC only describes a partial system behaviour, it is advantageous to have a

number of simple MSCs that can be combined in di�erent ways.

To determine possible combinations the already introduced (global and non-global)

conditions may be used employing certain composition and decomposition rules which

presently are part of the methodology guidelines [18]. According to the recent ITU-T

work this composition may be de�ned within roadmaps (cf. Section 4).

MSCs can be composed by name identi�cation of �nal and initial (global or non-global)

conditions. The other way round, MSCs can be decomposed at intermediate (global



9

msc

Inres_service
decomposed

Structural_Concepts

ICONreq

IDISind

ICONind

(a) MSC with coregion

ICONreq

T

IDISind

Initiator
process

ISAP_Manager_Ini
process

ISAP_Manager_Res

Responder

ICON
ICONind

submsc Inres_service

(b) Re�nement of Inres service in (a)

Figure 7. Sample application of structural concepts

or non-global) conditions. Initial conditions denote the starting states, �nal conditions

represent end states, and intermediate conditions describe arbitrary states within MSCs.

An example of an MSC composition by means of non-global conditions is shown in Figure

8. The MSC Connection (Figure 8c) is a composition of the MSCs Connection request

(Figure 8a) and Connection con�rm (Figure 8b). Composition and decomposition of

MSCs obey the rules for global and non-global conditions, given below. Here, global

conditions refer to all instances involved in the MSC whereas non-global conditions are

attached to a subset of instances.

3.4.1. Composition by Means of Global Conditions

Two MSCs, MSC1 and MSC2, can be composed sequentially if both MSCs contain the

same set of instances and if the initial condition ofMSC2 corresponds to the �nal condition

of MSC1 according to name identi�cation. The �nal condition of MSC1 and the initial

condition of MSC2 become an intermediate condition within the composed MSC.

3.4.2. Composition by Means of Non-global Conditions

Two MSCs, MSC1 and MSC2, can be composed by means of non-global conditions if for

each instance which both MSCs have in commonMSC1 ends with a non-global condition

andMSC2 begins with a corresponding non-global condition. Corresponding to the MSC-

composition, MSCs can be decomposed due to intermediate conditions.

4. Outlook

The MSC standardization activities during the ITU-T study period 1989-1992 have con-

centrated on the elaboration of the syntax and informal semantics for basic MSCs. A

revised version of Z.120 containing enhancements and modi�cations is planned for 1996.

Enhancements and modi�cations of MSCs can be classi�ed with respect to basic MSCs

and structural concepts. For MSC basic concepts, the elaboration of an enhanced textual

syntax has been the main goal of the standardization activities, apart from the search

for new more intuitive timer symbols (Section 3.2.4). New structural concepts mainly

concern generalized causal ordering, MSC composition, and object-oriented modeling.

It should be noted that these language constructs are still under discussion in the



10

Initiator
process

ISAP_Manager_Ini
process

ISAP_Manager_Res

Responder

msc

ICONreq
ICON

ICONind

wait wait

disconnected disconnected

Connection_request

(a) Connection request

Initiator
process

ISAP_Manager_Ini
process

ISAP_Manager_Res

Responder

msc Connection_confirm

wait wait

ICONresp
ICONF

ICONconf

connected

(b) Connection con�rm

Initiator
process

ISAP_Manager_Ini
process

ISAP_Manager_Res

Responder

msc

ICONreq
ICON

ICONind

disconnected disconnected

Connection

wait wait

ICONresp
ICONF

ICONconf

connected

(c) MSC composed of (a) and (b)

Connection

Connection_confirm

connected

wait,wait

Connection_request

disconnected,disconnected

(d) Corresponding MSC road map

Figure 8. Composition and decomposition of MSCs

ITU-T. Their selection and presentation within this tutorial, in many respects reect the

standpoint and the preferences of the authors.

4.1. Generalized Coregion

The present Z.120 is restricted to total event ordering on MSC instances (normal case)

and coregions which denote complete unordering of the contained events. Since MSC

instances may refer to higher level entities like, e.g., SDL blocks or SDL systems, language

constructs for the speci�cation of more general causal orderings within one instance are

demanded. Obviously, language constructs concerning generalized causal ordering are

necessary also for decomposed instances and submscs.

Accordingly, dependencies (or lack of dependencies) between events as a generalization

of the coregion construct have to be expressed. As a straightforward generalization, the

coregion is enhanced by special symbols called connections denoting the causal ordering

(Figure 9). No event ordering is prescribed by the vertical dashed borders of the column

itself. The connections de�ne the ordering in an intuitive manner, they indicate the time

direction from top to bottom (which is a generalization of the time ordering concept for

instances in the present Z.120): Event e1 is causally ordered with respect to event e2



11

ICONreq

IDISind

ICONind

ICONresp

msc

Inres_service

connectivity1 msc

Inres_service

ICONind

ICONresp

ICONreq

IDISind

connectivity2

Figure 9. Causal relations de�ned by connections (extension of coregion)

MSC2
decomposed
as

msc MSC1

inst1

S2

S1

msc MSC2

S1

S2

inst2 inst3

S3

Figure 10. New decomposition clause

(e1<e2) if and only if e1 and e2 are connected and e2 can be reached from e1 by following

the vertical connections in the direction from top to bottom only. Accordingly, in the

example in Figure 9 we have the following causal ordering:

ICONreq<ICONind<ICONresp and ICONreq<IDISind

4.2. Submsc

The assignment of a submsc to a decomposed instance by means of name identi�cation

in general is too narrow. There are cases, were instances with the same name in di�erent

MSCs should be decomposed into di�erent submscs. The decomposition clause may be

extended by an optional term which names the MSC that de�nes the decomposition

(Figure 10). At the same time, the term submsc becomes superuous.

4.3. MSC Composition

In addition to the sequential composition of MSCs based on conditions, real world telecom

examples demand further composition operators, such as parallel composition, alternative

composition, iteration and interrupt handling. As a main representative in the follow-

ing, a special parallel merge operation with synchronization, the environmental merge,

is sketched. The environmental merge may be understood as a horizontal merge opera-

tion. A special application could be the horizontal paging. Some other parallel merge

operations, called synchronization merge and synchronization condition merge, are under

consideration but not discussed here (cf. [16]).

The environmental merge operator kenv (Figure 11) identi�es every message sent to or

received from a gate in the environment of the �rst MSCMSC1 with the message received

from, respectively sent to, the equally named gate in the environment of the second MSC



12

msc MSC1

Inst1

S1
S2 g1

k
env

msc MSC2

S2
S3

Inst2

g1

=

msc MSC3

Inst1

S1
S2

S3

Inst2

Figure 11. Environmental merge

MSC2. The explicit de�nition of gates may be omitted for messages with unambiguous

names in an MSC. The environmental merge operator then identi�es the equally named

messages to, respective from, the environment in both MSCs.

Composition techniques demand an intuitive means for the description of composition

operations and the most obvious description technique is provided by MSC overview

diagrams or road maps (Figure 8d). Road maps may include symbols denoting parallel

merge, alternative merge and disruption. MSC road maps may be used to represent all

possible MSC compositions in a compact manner: the rectangles represent MSCs, the

hexagons the initial and �nal conditions of these MSCs. There are three interpretations

of road maps which are under discussion:

1. The road map only serves as an additional auxiliary diagram in order to provide a

better overview about the MSCs contained in the MSC document. The road map

does not contain information additional to the set of MSCs, i.e., the road map can

be derived from the set of MSCs without additional information.

2. The road map actually de�nes the compositions of MSCs. The prescribed compo-

sitions only have to be in agreement with the conditions contained in the MSCs

according to the de�nition of allowed combinations.

3. The compositions of MSCs are exclusively de�ned by the road map. Conditions

have no meaning for composition.

4.4. Object oriented techniques

Object oriented techniques often provide a graphically more intuitive representation than

pure composition techniques. In practice, a combination of pure composition techniques

and object oriented techniques has proven to be most powerful.

One of the major achievements of SDL'92 compared with SDL'88 was the introduction

of a more powerful scheme for handling recurring patterns. In SDL'92 these concepts

were labeled as object orientation. It might be very helpful in the future use of the

powerful combination of MSC and SDL to have a corresponding concept for MSC. The

main reason for the introduction of an MSC type concept again is to have a means for

handling recurring patterns (as an alternative for, e.g., a macro construct). MSC type

instances are a compact way to express MSC composition. It is quite evident that context

parameters can be introduced. Typically messages, i.e., actually message types, can be

used as parameters. Possibly, instances (instance kind) can also be parameterized.

Each MSC can be seen as a de�nition of an MSC type. MSC types can be used in other

MSC types. MSC types may be de�ned inside of an MSC or separately (Figures 12, 13).



13

msc

S2

S1

S1

MSC1

a

b

inst1 inst1

a

b

msc

inst2

S1

S1

MSC2

MSC1

Figure 12. MSC type with gates

inst1 inst2

S0

S1

S2

msc

virtual msc

MSCvirt S3

S4

MSCwithVirt MSCinheritancemsc
inherits MSCwithVirt with redefined MSCvirt

inst1 inst2

MSCvirt

redefined msc S1

S2

Figure 13. Virtual MSCs and rede�nition

An MSC type may be connected to its environment via message-gates. In the example

in Figure 12, the MSC type MSC1 is used within the MSC type MSC2, the letters a and

b at the environment of MSC1 and within the reference symbol to the MSC type MSC1

in MSC2 denote message gates. Gates are used to de�ne the connection points when an

MSC type is used in another type.

It is obvious that when the type concept has been established, it is not far to real object

orientation including inheritance and virtuality. Inheritance means that one MSC type

is a specialization of another MSC type. The idea behind virtuality is that virtual types

enclosed in the general type may get a new de�nition in the specialization.

Virtual means that it is possible to adapt an MSC to special con�gurations or situations

by rede�ning virtual MSC parts. E.g., in Figure 13 the MSC type MSCwithVirt includes

the inline de�nition of the virtual type MSCvirt. MSCinheritance inherits MSCwithVirt

with the rede�nition ofMSCvirt. This rede�nition means thatMSCinheritance is obtained

replacing MSCvirt in MSCwithVirt by the inline rede�nition of MSCvirt.

In comparison with pure composition techniques, the presented object oriented tech-

niques have the advantage that MSCs which belong together are integrated within a larger

frame from the very beginning. Whereas pure composition technique may easily end up

in something like a puzzle, object oriented techniques could be compared with a large

painting where all parts remain integrated within the context. In practice, the MSC type

concept has turned out to be very useful, particularly in combination with composition

techniques. On the other hand, typical object oriented techniques, i.e., inheritance and

virtuality, need further studies before they may be integrated into the MSC language.



14

REFERENCES

1. B. Algayres, Y. Lejeune, F. Hugonnet, F. Hantz. The AVALON-Project { A VAL-

idatiON Environment for SDL/MSC Descriptions. In: SDL'93 - Using Objects

(O. Faergemand and A. Sarma, editors). North-Holland, Oct. 1993.

2. A. Ek. Verifying Message Sequence Charts with the SDT Validator. In: SDL'93 - Using

Objects (O. Faergemand and A. Sarma, editors). North-Holland, Oct. 1993.

3. A. Ek. Event-Oriented Textual Syntax. TD44 (Question 9/10), ITU-T Study Group

10 Meeting in Geneva, Oct. 1994.

4. J. Grabowski, P. Graubmann, E. Rudolph. The Standardization of Message Sequence

Charts. In: Proceedings of the IEEE Software Engineering Standards Symposium

1993. Sept. 1993.

5. J. Grabowski, D. Hogrefe, R. Nahm.A Method for the Generation of Test Cases Based

on SDL and MSCs. Technical Report IAM-93-010, University of Berne, Institute for

Informatics, April 1993.

6. J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose Speci�-

cation by MSCs. In: SDL'93 - Using Objects (O. Faergemand and A. Sarma, editors).

North-Holland, Oct. 1993.

7. J. Grabowski, E. Rudolph. Putting Extended Sequence Charts to Practice. In: SDL'89 -

The Language at Work (O. Faergemand and M. M. Marques, editors). North-Holland,

Oct. 1989.

8. O. Haugen. Case Studies: MSC and Structural Concepts. TD17 (Question 9/10),

ITU-T Study Group 10 Meeting in Geneva, Oct. 1994.

9. O. Haugen. Structural Concepts in MSC. Report from Associate Rapporteur. TD18

(Question 9/10), ITU-T Study Group 10 Meeting in Geneva, Oct. 1994.

10. D. Hogrefe. OSI Formal Speci�cation Case Study: The Inres Protocol and Service

(revised). Technical Report IAM-91-012, University of Berne, Institute for Informatics,

May 1991, Update May 1992.

11. ITU-T SG 10 Q.9 (Rapporteur). Correction List for Z.120 (I): Extensions and Mod-

i�cations of Basic Concepts. TD31 (Question 9/10), ITU-T Study Group 10 Meeting

in Geneva, Oct. 1994.

12. I. Jacobson. Object-Oriented Software Engineering { A Use Case Driven Approach.

Addison-Wesley, 1992.

13. F. Kristo�ersen. Message Sequence Chart and SDL Speci�cation Consistency Check.

In: SDL'91 Evolving Methods (O. Faergemand and R. Reed, editors). North-Holland,

1991.

14. R. Nahm. Consistency Analysis of Message Sequence Charts and SDL-Systems. In:

SDL'91 Evolving Methods (O. Faergemand and R. Reed, editors). North-Holland,

1991.

15. M. A. Reniers. Syntax Requirements of Message Sequence Charts. TD59 (Question

9/10), ITU-T Study Group 10 Meeting in Geneva, Oct. 1994.

16. E. Rudolph, P. Graubmann, J Grabowski. Message Sequence Chart: Composition

Techniques versus OO-Techniques - 'Tema con Variazioni'. In: SDL'95 - Proceedings

of the 7.th SDL Forum in Oslo, Norway (R. Braek and A. Sarma, editors). North-

Holland, Sep. 1995.



15

17. Z.100 (1993). CCITT Speci�cation and Description Language (SDL). ITU-T, June

1994.

18. Z.100 I (1993). SDL Methodology Guidelines. Appendix I to Z.100. ITU-T, July 1993.

19. Z.120 (1993). Message Sequence Chart (MSC). ITU-T, Sep. 1994.

20. Z.120 B (1995). Message Sequence Chart Algebraic Semantics. ITU-T Publ. sched.,

May 1995.


