
1

The formalization of Message Sequence Charts

S. Mauwa

a Dept. of Mathematics and Computing Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: sjouke@win.tue.nl

We discuss the state of a�airs with respect to the formalization of Message Sequence

Charts (MSC) and identify which parts of the de�nition of MSC are still candidate for

formalization. Further, we give a tutorial on the formal semantics of MSC. The semantics

of all features from the MSC language is treated by presenting small examples and the

corresponding process algebra expressions.

Keywords: Message Sequence Charts; semantics; process algebra.

1. INTRODUCTION

Message Sequence Charts (MSC) is a graphical language for the speci�cation of system

traces. It is standardized by the ITU (International Telecommunication Union). The

ITU maintains recommendation Z.120 [5], which contains a (partly informal) de�nition of

MSC. MSCs are applied in the telecommunication sector for the speci�cation of system

requirements and for testing, often in combination with SDL [1, 4].

Because of its widespread use, discussions on the meaning of an MSC became unavoid-

able, so it was decided to start the formalization of MSC several years ago. The �rst

part subject to formalization was the semantics. Several approaches have been studied

(see [2, 3, 8, 13]) of which the process algebra approach was accepted for standardization

[6, 9]. One of the purposes of this paper is to give an informal tutorial on this process

algebra semantics.

Currently, the static requirements are formalized [10]. It is investigated whether other

parts of Z.120 also need formalization. The second goal of this paper is to describe the

state of a�airs with respect to the formalization of MSC and to indicate which parts

possibly need further formalization.

The main motivation for formalization is that users of the language need to understand

each other precisely. An MSC should have only one interpretation. Ambiguities, incon-

sistencies and obscurities hamper proper use of the language. This implies not only that

the semantics of MSC must have a formal base, but that also the appearance and use

of MSCs should be formalized as much as possible. If two computer tools for MSC do

not agree on the collection of admitted MSCs, they are not able to exchange MSCs. If

there are two incompatible ways to transform an MSC from graphical representation into

textual representation, this will lead to problems.

This paper is organized as follows. In Section 2 we discuss the state of a�airs with

respect to the formalization of MSC. In Section 3 we give a tutorial on the formal seman-

tics. This paper does not contain an introduction to the MSC language. Please refer to

the aforementioned literature for more information about MSC.



2

Acknowledgements

Parts of this work are inspired by fruitful discussions with Michel Reniers. Thanks are

due to Jos Baeten, �ystein Haugen, Richard Sanders and Louis Verhaard for commenting

on a draft version of this paper.

2. FORMALIZATION

In this section we will explore which parts of the MSC landscape are suited for formal-

ization.

First we will summarize the current situation. Recommendation Z.120 [5] contains the

de�nition of MSC, as accepted by the ITU. It contains a textual and graphical syntax and

an informal description of the meaning of an MSC. Appendix B to recommendation Z.120

[6] contains a formal description of the semantics of MSC using process algebra. Finally,

a proposal for a formal de�nition of the static requirements for MSC is in [10, 15].

Figure 1 displays the relevant parts of the MSC de�nition with respect to formalization.

We consider the textual syntax, the graphical syntax and the semantics.

MSC

Textual syntax

Semantics

abstract grammar

concrete grammar

static requirements

denotational

operational

abstract grammar

concrete grammar

drawing rules

Graphical syntax

Figure 1. Parts of Z.120 possibly subject to formalization

2.1. Textual syntax

Although MSC is basically a graphical language, a textual syntax is de�ned for manip-

ulation of MSCs, such as exchanging them between users or tools.

The abstract grammar describes the bare information contents of a textual MSC. Its

main purpose is to provide a clean starting point for the de�nition of the semantics

(although the formal semantics is based on the concrete grammar for ease of use). It

can also be used for transformation and manipulation of the contents of an MSC (such

as analysis), in contrast with manipulation of the occurrence of an MSC (such as pretty

printing).

The concrete grammar describes the appearance of an MSC to a user. It de�nes the

actual tokens (lexical syntax) which make up an MSC text and the order in which they



3

are allowed to appear (context free syntax). The abstract grammar is more or less equal

to the concrete textual grammar from which all syntactic sugar is removed.

Both abstract and concrete grammar are given using a so-called BNF grammar, which

is an accepted formal technique for de�ning the syntax of a language.

Not all MSCs generated by the grammar are considered valid. For instance, it is required

that every instance referenced in an MSC has been declared. This gives raise to a set

of requirements on MSC. These are often called static semantics, but we prefer static

requirements or context sensitive syntax.1

The de�nition of the static requirements in Z.120 is in natural language and thus infor-

mal. Formalizing the requirements [10, 15] not only helped in removing ambiguities and

making Z.120 more consistent, it also revealed some de�ciencies.

We may conclude that the textual syntax will soon be formalized completely.

2.2. Graphical syntax

The graphical syntax from Z.120 is de�ned by BNF-like production rules. Informal

texts are used to de�ne the relation between the graphical constructs. Phrases such as

\is connected to" and \is followed by" leave room for misinterpretations. For instance,

a <message in area> consists a.o. of a <message symbol> (i.e. a line with an arrow

pointing left or right) connected to a <message out area> (i.e. a horizontal line). One

possible interpretation is that it is allowed to connect the horizontal line to the arrow

head of the arrow-line. This is obviously not the intention.

A more serious problem is that the meaning of the set of rules is not clear. Whereas in

the textual grammar the rules are viewed as productions (only expressions are considered

which can be produced by applying the rules a �nite number of times), in the graphical

grammar the rules are also used to de�ne the (spatial) relation with already produced

graphical objects. For instance, an <msc symbol> is the bounding box of an MSC. It

can contain several items, for example an instance with a message from the environment.

This incoming message symbol is connected to the bounding box. This bounding box is

simply repeated in the production rule for an incoming message. If we consider this a real

production rule, we obtain more than one bounding box. Obviously, we must interpret

the rules in such a way that this bounding box is the same one as the one produced earlier.

It is hard to de�ne a two-dimensional structure using a set of linear production rules.

A more natural way of dealing with this problem is to use, so-called, graph grammars. A

promising approach is given in [14]. It de�nes both an abstract and concrete graphical

syntax for Basic Message Sequence Charts.

The graphical grammar in Z.120 is accompanied by a series of informal drawing rules,

which partly restrict the number of allowed MSCs and partly help to interpret MSCs

whose meaning is not obvious. Whenever possible the restrictions were already covered

in the static requirements for the textual syntax.

Our conclusion is that there is a need for a more formal treatment of the graphical

syntax and the drawing rules of MSC.

1The term static semantics is somewhat overloaded. The term is also used for the semantics of static data

types and for the preprocessing phase in which a language text is transformed into some normal form for

which the dynamic semantics can be obtained easily (e.g. removing modular structure and expanding

macro de�nitions).



4

2.3. Semantics

With respect to semantics of programming languages a distinction can be made between

denotational semantics and operational semantics.

A denotational semantics consists of a translation of an expression from the language

into an expression in some mathematical domain. This allows for formal manipulation (in

case of MSC, e.g. expanding decomposed instances by sub-MSCs) and deriving properties

(e.g. check if two MSCs are in fact identical up to some isomorphism, how many traces

does the MSC generate, can the MSC be implemented synchronously).

A more dynamic interpretation of a language can be obtained by means of an opera-

tional semantics. It consists of a procedure to transform an expression into a behaviour

(an execution step) and a new expression (the result after executing this step). Using the

operational semantics one can prototype or test an expression.

The semantics of MSC is described in Z.120 [5] in an informal and often operational

way. The formal semantics is given in [6] by means of a translation into process algebra

expressions. This is a denotational semantics. However, one can easily assign an oper-

ational semantics to these process algebra expressions, by adding transition rules. This

is elaborated for Basic Message Sequence Charts in [9]. It is not di�cult to extend the

formal semantics of the complete MSC language with operational rules. Instead of giving

an indirect operational semantics by de�ning the operational behaviour of the process

algebra expressions, it is also possible to give an operational semantics directly based on

MSC. The main advantages of this one step approach are comprehensibility and ease of

use. The disadvantage is that it is more di�cult to establish a formal relation between

the operational and denotational semantics in this way.

The current semantics does not de�ne the composition and decomposition of MSCs.

The inclusion of explicit mechanisms for structuring a speci�cation are still under discus-

sion [7].

We conclude that with respect to the semantics, work is needed on de�ning the opera-

tional semantics and de�ning the composition of MSCs.

2.4. Other issues

In this section we will discuss some issues concerning formalization that are not strictly

related to one of the items from Figure 1.

First we will look at the relation between the textual syntax, the graphical syntax and

the semantics. Basically, the textual syntax and the graphical syntax de�ne the same

language, so, ideally the abstract textual grammar and the abstract graphical grammar

are more or less identical. However, in MSC there is a discrepancy between the textual

approach and the graphical approach. The textual representation is instance oriented,

whereas the graphical representation is event oriented. This means that the textual rep-

resentation de�nes all events, ordered per instance. This makes it non-trivial to identify

which message output corresponds to which message input. Extension of the message

name is needed to solve this problem. In the graphical representation message inputs and

message output are always connected, so the problem does not occur here.

Since the translation of both syntaxes into each other is non-trivial, the procedure for

doing so should be de�ned explicitly and formally. Such conversion is also needed, since

the formal semantics is only de�ned for the textual representation of MSC.



5

Next, we have a look at tools. The formal de�nition of the grammars can be viewed as

a high level de�nition of tools for scanning, parsing, requirements checking, editing and

drawing of MSC texts and graphs.

Tools for analyzing MSCs will be based on the denotational semantics and tools for

simulation and prototyping will be based on the operational semantics.

In order to formalize tools which aid in designing SDL speci�cations from MSC di-

agrams, the relation between the two languages has to be studied and formalized. In

exchanging MSCs between tools one often wants to include information that is not rep-

resented in the semantics, such as concrete positions of objects in the graphical represen-

tation. A (formalized) interchange language will be useful for this.

In [12] a collection of tools for Basic Message Sequence Charts was formally speci�ed.

Although it is possible to formalize all tools and uses of the MSC language, it is, in our

opinion, not desirable to restrict users and tool builders too much.

Summarizing, a formal procedure for transforming textual and graphical syntax into

each other is needed and the relation between MSC and related languages such as SDL

and TTCN has to be formalized.

3. FORMAL SEMANTICS

The purpose of this section is to give an overview of the process algebra semantics

of MSC, as de�ned in [6]. Process algebra theory will be avoided as much as possible.

We present a series of MSC examples and explain for each example the process algebra

expression that denotes its semantics. Most MSC features will be treated in such a way

that the semantics of arbitrary MSCs can be derived simply by applying the rules of

thumb. Although the formal semantics is de�ned on the textual syntax of MSC, we will

only display the MSCs in the graphical representation.

3.1. One instance

First we look at an MSC with one single instance (see Figure 2).

i

k
l

m

msc OneInstance

Figure 2. An MSC with one instance

MSC OneInstance describes instance i, which has three communications with the en-

vironment. An MSC is completely characterized by the sequences of events it allows.



6

Obviously, MSC OneInstance describes only one unique trace: �rst we have an output

of message k to the environment, after that there is an output of message l to the en-

vironment, and �nally an input of message m from the environment. In process algebra

notation, this gives the following trace:

out(i; env; k) � out(i; env; l) � in(env; i;m)

The operator � denotes strict sequential composition. So, the semantics of an MSC is a

process algebra expression, which is built from operators (e.g. the sequential composition)

and actions or simple events (i.e. events such as the sending of message k from instance

i to the environment, denoted by out(i; env; k)). Since the events on one instance are

ordered from top to bottom, the semantics of an instance is the sequential composition

of its events.

3.2. Two instances

The semantics of an MSC is constructed from the semantics of its instances. In Figure

3 we have two instances exchanging one message.

i

k

msc TwoInstances

j

Figure 3. An MSC with two instances

The semantics of instance i is out(i; j; k). The semantics of instance j is in(i; j; k). The

basic idea is that the two instances operate in parallel, independently of each other. So,

as a �rst attempt, the semantics of MSC TwoInstances is the parallel composition of the

semantics of instances i and j. In process algebra notation:

out(i; j; k) k in(i; j; k)

The operator k denotes parallel composition. It is de�ned as the interleaved execution

of its operands. It means that we have the following traces: out(i; j; k) � in(i; j; k) and

in(i; j; k) � out(i; j; k). In process algebra notation:

out(i; j; k) � in(i; j; k) + in(i; j; k) � out(i; j; k)

Here we use the operator + to denote alternatives. This expression is the result of ex-

panding the k operator from the previous expression. The precedence of the operators



7

is as follows: � has precedence over k, which has precedence over +. So, the expression

a+ b � c k d should be read as a+ ((b � c) k d).

Now, notice that our interpretation that the semantics of an MSC is the parallel compo-

sition of the semantics of its instances does not take into account the fact that a message

can only be received after that it has been sent. So, in the above expression we allow

too many traces. The trace in(i; j; k) � out(i; j; k) must be ruled out. We introduce the

operator � to enforce the basic static requirement that a message must be sent before it

is received. This operator is often called the state operator.

The desired semantical expression is

�(out(i; j; k) k in(i; j; k))

which is equal to

�(out(i; j; k) � in(i; j; k) + in(i; j; k) � out(i; j; k))

which is simply

out(i; j; k) � in(i; j; k)

So, the semantics of an MSC is derived from the semantics of its instances by placing

them in parallel and removing unwanted execution orders by applying the state operator.

Please note, that applying the state operator to the MSC ONeInstance in Figure 2 does

not change the result.

3.3. Two messages

The following example describes two instances exchanging two messages (see Figure 4).

i j

k

l

msc TwoMessages

Figure 4. An MSC with two messages

The semantics of instance i is out(i; j; k) � in(j; i; l). The semantics of instance j is

in(i; j; k) � out(j; i; l). The semantics of MSC TwoMessages is as follows

�(out(i; j; k) � in(j; i; l) k in(i; j; k) � out(j; i; l))

This can be expanded as



8

�(out(i; j; k)�( in(i; j; k) � (in(j; i; l) � out(j; i; l) + out(j; i; l) � in(j; i; l))

+ in(j; i; l) � in(i; j; k) � out(j; i; l)

)

+

in(i; j; k)� ( out(i; j; k) � (out(j; i; l) � in(j; i; l) + in(j; i; l) � out(j; i; l))

+ out(j; i; l) � out(i; j; k) � in(j; i; l)

)

)

The operand of the � operator can be read as follows. Either we start with sending

message k or receiving k. In the �rst case, there are two ways to proceed. The �rst

possibility is that i receives message k. After that, sending and receiving of l can occur

in any order. The second possibility after sending k is that instance j receives message l.

After that, instance j �rst receives k and then sends l. The case that the process starts

with receiving k is analogous.

It is clear that the operand of the � operator de�nes several traces in which a message

is received before it has been sent, e.g. out(i; j; k) � in(j; i; l) � in(i; j; k) � out(j; i; l). This

is again the reason for applying the � operator. After removing all unwanted execution

orders, the semantics equals

out(i; j; k) � in(i; j; k) � out(j; i; l) � in(j; i; l)

3.4. Two independent messages

Next, we give an example in which the messages are not causally related (see Figure

5).

i j

k

msc IndependentMessages

g h

l

Figure 5. An MSC with two independent messages

The same technique as in the previous example works. First we determine the semantics

of the instances i, j, g and h, which are out(i; j; k), in(i; j; k), out(g; h; l) and in(g; h; l),

respectively.

Then, the semantics of MSC IndependentMessages is as follows

�(out(i; j; k) k in(i; j; k) k out(g; h; l) k in(g; h; l))

After expanding the parallel composition and �ltering out unwanted execution sequences,

this gives



9

out(i; j; k)�( out(g; h; l) � (in(i; j; k) � in(g; h; l) + in(g; h; l) � in(i; j; k))

+ in(i; j; k) � out(g; h; l) � in(g; h; l)

)

+

out(g; h; l)�( out(i; j; k) � (in(i; j; k) � in(g; h; l) + in(g; h; l) � in(i; j; k))

+ in(g; h; l) � out(i; j; k) � in(i; j; k)

)

3.5. Conditions

A condition marks a point in an MSC which is of special interest. As has been concluded

in [7], conditions are used for many purposes, e.g. for composition of MSCs and for de-

scribing a particular state. Some problematic issues concerning the meaning of conditions

were discussed in [11]. Due to this variety of uses and the wide range of interpretations,

conditions are considered as meaningless in the formal semantics. This is expressed by

de�ning the semantics of a condition as ", which is the process that displays no activity.

The semantics of the MSC in Figure 6 is equal to

in(env; i; k) � " � out(i; env; l)

which is simply equal to

in(env; i; k) � out(i; env; l)

i

msc Condition

k

l

C

Figure 6. An MSC with a condition

3.6. Timers

There are three di�erent activities involved with timers. The setting of timer t on

instance i is denoted by set(i; t), a timeout is denoted by timeout(i; t) and a reset by

reset(i; t). In the semantics they play the role of simple events.

Figure 7 shows a timer t which is set by instance i. Before the timer expires, instance

i sends a message to instance j.



10

i j

k

msc Timer

t

Figure 7. An MSC with a timer

The semantics of instance i is set(i; t) � out(i; j; k) � timeout(i; t). The semantics of

instance j is in(i; j; k). The semantics of MSC T imer is

�(set(i; t) � out(i; j; k) � timeout(i; t) k in(i; j; k))

which evaluates to

set(i; t) � out(i; j; k) � (in(i; j; k) � timeout(i; t) + timeout(i; t) � in(i; j; k))

3.7. Actions

An action is also considered to be a simple event. If instance i performs action a, this

is denoted by the event action(i; a). The semantics of the MSC in Figure 8 is simply

out(i; env; k) � action(i; a)

i

k

a

msc Action

Figure 8. An MSC with an action

3.8. Instance creation and stop

Creation of an instance is treated as an asynchronous message. The event create(i; j)

denotes that instance i creates instance j and the event start(j) denotes that instance



11

j

i

msc Create

k

Figure 9. An MSC with creation and stop

j is a newly created instance starting its operation. Stopping instance j is denoted by

stop(j).

The semantics of the MSC in Figure 9 is

create(i; j) � start(j) � out(j; i; k) � (in(j; i; k) � stop(j) + stop(j) � in(j; i; k))

3.9. Coregion

A coregion is used to relax the strict ordering of events along an instance axis. As

stated before, the strict ordering is re
ected in the semantics by using the operator for

sequential composition (�). If we use the operator for parallel composition (k) instead,

the ordering is completely free.

i j

k

l

msc Coregion

Figure 10. An MSC with a coregion

The semantics of instance j in Figure 10 is again in(i; j; k) � in(i; j; l). However, the

semantics of instance i is out(i; j; k) k out(i; j; l). This is equal to out(i; j; k) � out(i; j; l)+

out(i; j; l) � out(i; j; k). Now, the semantics of MSC Coregion is

�(in(i; j; k) � in(i; j; l) k (out(i; j; k) � out(i; j; l) + out(i; j; l) � out(i; j; k))

This is equal to



12

out(i; j; k)�( out(i; j; l) � in(i; j; k) � in(i; j; l)

+ in(i; j; k) � out(i; j; l) � in(i; j; l)

)

+

out(i; j; l) � out(i; j; k) � in(i; j; k) � in(i; j; l)

3.10. Sub-MSC

A modular design is obtained by using sub-MSCs and decomposed instances. An MSC

with decomposed instances can be transformed into one without. This is done by simply

replacing the behaviour of the decomposed instances by the behaviour of the corresponding

sub-MSCs. Technically this is a complex operation, but the intuition behind it is quite

clear.

Consider MSC Decomp in Figure 11. It has two normal instances, i and j, and one

decomposed instance d. The decomposed instance refers to submsc d, which de�nes

instances g and h.

k

msc Decomp

i
d

decomposed

l

j g h

k

l
m

submsc d

Figure 11. An MSC with decomposition

The resulting MSC (see Figure 12) now contains instances i, j, g and h. Notice that

message k from i to d is repeated as a message k in submsc d from the environment to

instance g. This means that in the resulting MSC there is one single message k from

instance i to instance g. The same reasoning goes for message l.

The semantics of MSC Decomp in Figure 11 is thus equal to the semantics of MSC

Flat in Figure 12, which is

out(i; g; k) � in(i; g; k) � out(g; h;m) � in(g; h;m) � out(h; j; l) � in(h; j; l)

4. STATIC REQUIREMENTS

This section contains a short explanation of the static requirements for MSC, as for-

malized in [10].



13

g h

m
l

j

k

i

msc Flat

Figure 12. Result of 
attening an MSC with decomposition

4.1. Requirements

Z.120 contains an informal description of a number of static requirements for MSC.

The requirements treated in [10] either follow from recommendation Z.120 or from the

discussion within the ITU study group maintaining this recommendation.

The requirements are stated in terms of predicates and functions on the textual syntax

of MSC. Advantages of the use of predicates and functions are that they are universally

known and that they have applications in almost every area of computing science.

Every requirement is expressed in one predicate. An MSC is valid if the conjunction of

all these predicates yields true. Requirements are de�ned with respect to the following:

� Uniqueness of instances;

� Consistency of chart interfaces;

� Declaration of referenced instances;

� Unique correspondence between input and output messages;

� Completeness of condition de�nitions;

� Uniqueness of process creation;

� Correct typing of creating, created and stopped instances;

� Consistency of causal orderings;

� Consistency of condition order;

� Messages crossing conditions

� Consistency of decomposition

We will not treat all predicates. As an example we will explain a predicate that is used

for checking the unique correspondence between input and output messages.

4.2. Correspondence between message input and output

The requirement which we explain here is informally stated as follows.

There is a unique correspondence between message inputs and message outputs.



14

This requirement is too complex to de�ne in one step. After re�ning the statement, we

obtain several predicates, one of which is the following.

To each message output that is sent to an instance there must be a correspond-

ing message input speci�ed on that instance.

Figure 13 contains an illegal MSC. It does not satisfy this requirement. Message k from

instance i has a corresponding input on instance j, but message l has not.

i j

k

msc Illegal

l

Figure 13. An illegal MSC

The textual representation of this illegal MSC is as follows.

msc Illegal;

instance i;

out k to j;

out l to j;

endinstance;

instance j;

in k from i;

endinstance;

endmsc;

When formalizing the above stated requirement it is immediately clear that we need a

function that determines the set of all outputs in a given MSC. This function is de�ned

in two steps. First we determine the set of all instance de�nitions from a given MSC, say

ch. This is calculated by the function AllInsts(ch), which can be easily de�ned. Notice

that this gives all instance de�nitions. The names of the instances can be determined by

applying the function Instname(i) to a given instance de�nition i.

Next, we de�ne the function which, given an instance de�nition i, determines the set

of outputs occurring in this instance de�nition (notation Outputs(i)). In the same way

we can de�ne the function Inputs(i).

For the given example, we have

AllInsts(Illegal) =



15

f instance i; out k to j; out l to j; endinstance;,

instance j; in k from i; endinstance; g

Outputs(instance i; out k to j; out l to j; endinstance;) =

f out k to j;, out l to j; g

Inputs(instance j; in k from i; endinstance;) =

f in k from i; g

Instname(instance j; in k from i; endinstance;) = j

Now, notice that the information from the function Outputs is not complete. The

sender of the message is not represented in out k to j;. Therefore, we need a more

complete and abstract representation of a message: (i; j; k). This means that instance i

sends message k to instance j. We de�ne the function Message(i)(o) which, given an

instance de�nition i and output o determines the abstract message (i; j; k). Using this

function, we can check easily if a given input and a given output correspond. Simply

check if they refer to the same abstract message.

In the example, we have

Message(instance i; out k to j; out l to j; endinstance;)(out k to j;) =

(i; j; k)

Message(instance j; in k from i; endinstance;)(in k from i;) =

(i; j; k)

So, for the output of message k there is a corresponding input on instance j.

Now, we have all ingredients for formally de�ning the requirement. We rephrase it as

follows.

Let ch be an MSC, then for every instance i de�ned in ch, and for every output

o de�ned on i �nd instance de�nition j that bears the name of the addressee

of output o. Now j must have an input in that refers to the same abstract

message as o.

Stated formally (using the function Addr(o) to �nd the addressee of an output message

o):

8i2AllInsts(ch)8o2Outputs(i)8j2AllInsts(ch)�
Addr(o) = InstName(j)) 9in2Inputs(j)Message(i)(o) =Message(j)(in)

�

The example shows that for the output of message k there is a corresponding input on

instance j, but for the output of message l there is not. Therefore, the example does not

satisfy the requirement.

5. CONCLUSION

We conclude that, although much work with respect to formalization has already been

done, there are still some issues that need clari�cation. We mentioned graphical syntax,

drawing rules, the relation between graphical and textual syntax, operational semantics,

composition of MSCs and the relation between MSC and other languages, such as SDL

and TTCN.



16

With respect to the formal semantics of MSC, we conclude that although knowledge of

process algebra is indispensable for a complete understanding, it is very easy to express

the meaning of an MSC in a process algebra expression without having detailed knowledge

of the underlying theory.

REFERENCES

1. F. Belina, D. Hogrefe, and A. Sarma. SDL with applications from protocol speci�ca-

tion. Prentice Hall, 1991.

2. J. de Man. Towards a formal semantics of Message Sequence Charts. In O. F�rge-

mand and A. Sarma, editors, SDL'93 Using Objects, Proceedings of the Sixth SDL

Forum, Darmstadt, 1993. Elsevier Science Publishers B.V.

3. J. Grabowski, P. Graubmann, and E. Rudolph. Towards a Petri Net based semantics

de�nition for Message Sequence Charts. In O. F�rgemand and A. Sarma, editors,

SDL'93 Using Objects, Proceedings of the Sixth SDL Forum, Darmstadt, 1993. Else-

vier Science Publishers B.V.

4. ITU-TS. ITU-TS Recommendation Z.100: Speci�cation and Description Language

(SDL). ITU-TS, Geneva, 1988.

5. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,

Geneva, 1994.

6. ITU-TS. ITU-TS Recommendation Z.120 Annex B: Algebraic semantics of Message

Sequence Charts. ITU-TS, Geneva, 1995.

7. ITU-TS. Minutes of MSC internet meeting on semantics of conditions. MSC internet

meeting TD11, 1995.

8. P.B. Ladkin and S. Leue. Interpreting Message Sequence Charts. Technical Report

IBM RJ 8965, IBM Almaden Research Center, San Jose, CA, 1992.

9. S. Mauw and M.A. Reniers. An algebraic semantics of Basic Message Sequence Charts.

The computer journal, 37(4):269{277, 1994.

10. S. Mauw and M.A. Reniers. Formalization of static requirements for Message Sequence

Charts. Joint rapporteurs meeting SG10, Geneva TD9010, ITU-TS, 1994.

11. S. Mauw and M.A. Reniers. Thoughts on the meaning of conditions. Experts meeting

SG10, St. Petersburg TD9016, ITU-TS, 1995.

12. S. Mauw and E.A. van der Meulen. Generating tools for Message Sequence Charts.

In SDL'95 with MSC in CASE, Proceedings of the Seventh SDL Forum, Oslo, 1995.

Elsevier Science Publishers B.V.

13. S. Mauw, M. van Wijk, and T. Winter. A formal semantics of synchronous Interwork-

ings. In O. F�rgemand and A. Sarma, editors, SDL'93 Using Objects, Proceedings of

the Sixth SDL Forum, Darmstadt, 1993. Elsevier Science Publishers B.V.

14. J. Rekers. A de�nition of the graphical syntax of Basic Message Sequence Charts.

Technical report, Leiden University. (in preparation).

15. M.A. Reniers. Static semantics of Message Sequence Charts. In SDL'95 with MSC in

CASE, Proceedings of the Seventh SDL Forum, Oslo, 1995. Elsevier Science Publishers

B.V.


