
Toward a UCM-based Approach for

Recovering System Availability

Requirements from Execution Traces

Jameleddine Hassine
King Fahd University of Petroleum

and Minerals,

Dhahran, Saudi Arabia

jhassine@kfupm.edu.sa

Wahab Hamou-Lhadj
Software Behaviour Research (SBA) Lab

ECE, Concordia University, Montreal,

Canada

abdelw@ece.concordia.ca

SAM’14, Valencia, Spain

2

Goal and Applications

 Goal:

 To provide an approach based on UCM, a high-level visual requirement

description language, for recovering system availability features from

execution logs.

 Applications:

 Verification of system implementation w.r.t. availability requirements

 Understanding, analyzing, and system debugging

 Simulation of system scenarios

 Documentation and knowledge sharing

3

UCM: Use Case Maps

 Part of the ITU-T User Requirements Notation (URN) standard.

 A high-level visual scenario-based modeling language.

 Used to capture and integrate functional requirements in terms of

causal scenarios.

 Static and behaviour of the system are shown in one diagram.

 Provides the stakeholders with guidance and reasoning about the

system-wide architecture and behaviour.

 Good tool support: JUCMNav.

4

Example of a UCM

5

Approach

6

Approach:

Log Generation

Timestamp

Process ID

Facility

Severity

Description

7

Approach:

Log Generation

8

Approach:

Log Customization

9

Approach:

Phase Extraction

10

Approach:

Phase Extraction

11

Approach:

Phase Extraction

 Log entries from different components are placed in separate

phases

 Log entries describing different features' events/errors are placed

into separate phases.

 Log entries relative to user actions are separated from system

response log.

 Etc.

12

Approach:

Mapping to UCM

13

Approach:

Mapping to UCM

 Each log entry is mapped to one responsibility.

 An execution phase with more than one responsibility is described

using a plugin enclosed within a static stub.

 A phase, part of the exception path, having a single responsibility

should be enclosed within a static stub.

 Sequential stubs bound to the same component and belonging to one

path (regular or exception), may be refactored into a static stub.

 Component related information such as the redundancy protocol, the

redundancy group, etc., are mapped to component metadata

attributes.

 In case two log entries have the same timestamp, their corresponding

responsibilities should be enclosed within an AND-Fork and an AND-

Join.

14

Approach:

Mapping to UCM

Preliminary Evaluation

15

 Target System: Hot Standby Router Protocol (HSRP)

 A Cisco proprietary protocol that provides network redundancy for IP

networks.

 By sharing an IP address and a MAC address, two or more routers can

act as a single virtual router, known as an HSRP group or a standby

group.

 The active router, elected from the group, is responsible for forwarding

the packets that hosts send to the virtual router.

 If the active router fails, the standby router takes over as the active

router. If the standby router fails or becomes the active router, then

another router is elected as the standby router.

Testbed: Network topology

16

Two FastEthernet

Interfaces: F0/0 and F0/1

 The testbed was built using the Graphical Network Simulator 3 (GNS3)

simulation software. GNS3 allows to emulate complex networks, by combining

actual devices and virtual devices together.

 Logs can be collected from Cisco IOS routers through console logging (default

mode), syslog server logging (use of external syslog servers for log storage)…

Sample logs for Router R1

17

 After the log customization and phase

extraction steps

18

19

Combining R1 and R2 Logs

20

Conclusion and Future Directions

21

 We proposed a UCM-based approach for recovering availability

requirements from log/traces

 The approach relies on multiple processing of log information

including the extraction of execution phases

 Future Work:

 Automation: investigate how the identification of execution phases can be

automated (identify availability patterns, use of heuristics, etc.)

 Scalability: apply the approach to more complex systems (with larger

system logs)

 Generalization: generalize the approach to other HA management

systems (e.g., AMF from SAForum)

 Usability: work with analysts to assess the usability and utility of the

approach in practice

22

Thank you.

