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SnT Software Verification and Validation Lab —

« SnT centre, Est. 2009: Interdisciplinary,
ICT security-reliability-trust

« 230 scientists and Ph.D. candidates, 20
industry partners

« SVV Lab: Established January 2012,
WWW.SVV.Iu

« 25 scientists (Research scientists,
associates, and PhD candidates)

* Industry-relevant research on system
dependability: security, safety, reliability

« Six partners: Cetrel, CTIE, Delphi, SES,
|[EE, Hitec ...




An Effective, Collaborative Model of Research §lIT

and Innovation Som——
Schneiderman, 2013

Innovation & Development

« Basic and applied research take place in a rich context

« Basic Research is also driven by problems raised by applied
research, which is itself fed by innovation and development

» Publishable research results and focused practical solutions that
serve an existing market. 3
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Collaboration in Practice

» Well-defined problems in context
» Realistic evaluation
« Long term industrial collaborations

Industry
Partners
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Validation
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Research
Groups
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Motivations

The term “verification” is used in its wider sense: Defect
detection and removal

One important application of models is to drive and automate
verification

In practice, despite significant advances in model-based testing,
this is not commonly part of practice

Decades of research have not yet significantly and widely
impacted practice
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Applicability?
Scalability?
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Definitions

« Applicable: Can a technology be efficiently and
effectively applied by engineers in realistic
conditions?

— realistic # universal
— includes usability

« Scalable: Can a technology be applied on large
artifacts (e.g., models, data sets, input spaces) and
still provide useful support within reasonable effort,
CPU and memory resources?



Outline _S__ﬂT

* Project examples, with industry collaborations

* Lessons learned regarding developing applicable and
scalable solutions (our research paradigm)

« Meant to be an interactive talk — | am also here to
learn
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Testing Closed-Loop Controllers

References:

* R. Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers:
Scalable Search Using Surrogate Models”, IEEE/ACM ASE 2014

* R. Matinnejad et al., “Search-Based Automated Testing of Continuous Controllers:
Framework, Tool Support, and Case Studies”, Information and Software Technology
(2014)
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Dynamic continuous controllers are present in SN
many embedded systems —




(Model-in-the-Loop )
Stage

( )

D

Simulink Modeling

D

MiL Testing

Getting Started with Simulink® 7

MATLAB
SIMULINK"

4\ The MathWorks™~

Development Process (Delphi)

B

Generic
Functional
Model

Stage

( Software-in-the-Loop A

~ »

Code Generation
and Integration

D

SiL Testing

program

J
~N

[N

Software
Release

———>

[Hardware-in-the-Loop\

ST

Stage )
( )

D

Software Running
on ECU

D

HiL Testing




Controllers at MIL

ST

Inputs: Time-dependent variables
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Inputs, Outputs, Test Objectives ST
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Process and Technology
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Process and Technology (2) -S—I-I-I
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Process and Technology (3)
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Challenges, Solutions

« Achieving scalability with configuration parameters:
— Simulink simulations are expensive

— Sensitivity analysis to eliminate irrelevant
parameters

— Machine learning (Regression trees) to partition
the space automatically and identify high-risk
areas

— Surrogate modeling (statistical and machine
learning prediction) to predict properties and avoid
simulation, when possible

18
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Results

 Automotive controllers on Electronics Control Units

« Qur approach enabled our partner to identify worst-
case scenarios that were much worse than known
and expected scenarios, entirely automatically

19




ST

Fault Localisation in Simulink Models

Reference:

* Bing Liu et al., “Kanvoo: Fault Localization in Simulink Models”, submitted

20




Context and Problem
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Context and Problem (2) §___"T

« Simulink models
— are complex
* hundreds of blocks and lines
* many hierarchy levels

 continuous functions - —
* output signals do not match == -
« wrong connection of lines 7 om— VT
« wrong operators in blocks - :@_": ﬂ | % j 1=
« Debugging Simulink models is - ] — o
— difficult "
— time-consuming
— but yet crucial
 Automated techniques to support debugging? .
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Evaluation and Challenges

» Good accuracy overall: 5-6% blocks must be inspected on
average to detect faults

« But less accurate predictions for certain faults: Low observability
« Possible Solution: Augment test oracle (observability)

— Use subsystems outputs

— lterate at deeper levels of hierarchy

— Tradeoff: cost of test oracle vs. debugging effort

— 2.3% blocks on average

» 5-6%: still too many blocks for certain models
* Information requirements to help further filtering blocks?

24
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Modeling and Verifying Legal
Requirements

Reference:

* G. Soltana et al., “ UML for Modeling Procedural Legal Rule”, IEEE/ACM MODELS
2014

* M. Adedjouma et al., “Automated Detection and Resolution of Legal Cross
References”, RE 2014

25
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Context and Problem
« CTIE: Government computer centre in Luxembourg
« Large government (information) systems

* Implement legal requirements, must comply with the
law

« The law usually leaves room for interpretation and
changes on a regular basis, many cross-references

* Involves many stakeholders, IT specialists but also
legal experts, etc. 25



Article Example

Art. 105bis [...]The commuting expenses deduction (FD) is
defined as a function over the distance between the principal
town of the municipality on whose territory the taxpayer's home
is located and the place of taxpayer’s work. The distance is
measured in units of distance expressing the kilometric distance
between [principal] towns. A ministerial requlation provides
these distances.

The amount of the deduction is calculated as follows:

If the distance exceeds 4 units but is less than 30 units, the
deduction is € 99 per unit of distance.
The first 4 units does not trigger any deduction and the

deduction for a distance exceeding 30 units is limited to €
2,574.

SHT




Project Objectives

Objective

Specification of legal requirements
 including rationale and traceability
to the text of law

Checking consistency of legal
requirements

Automated test strategies for checking
system compliance to legal requirements

Run-time verification mechanisms to
check compliance with legal
requirements

Analyzing the impact of changes in the
law

SHIT

Benefits

» Make interpretation of the law explicit
* Improve communication
* Prerequisite for automation

* Prevent errors in the interpretation of
the law to propagate

* Provide effective and scalable ways to
verify compliance

* Decrease costs and risks associated
with change
« Make change more predictable

28
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Solution Overview
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Research Steps

3. Model
Transformation
fo enable V&V

2. Build UML j
profile X
1. Conduct 4 )
grounded l - Target existing
theory study _ automation techniques
. . Solvers for testing
/- Explicit means for "\ : :
1 / capturing information - MATLAB for simulation
requirements \- J
- Basis for modeling
- What information methodology
content should we Target: Legal experts
expect? K and IT specialists
- What are the
complexity factors?
\ e Y

30



Art. 105bis [...]The commuting
expenses deduction (FD) is
defined as a function over the
distance between the principal
town of the municipality on whose
territory the taxpayer's home is

located and the place of
taxpayer’s work. The distance is
measured in units of distance
expressing the kilometric distance
between [principal] towns. A
ministerial regulation provides
these distances.

Example

Interpretation + Traces

SIT
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Example

The amount of the deduction is
calculated as follows:

If the distance exceeds 4 units but is
less than 30 units, the deduction is €

99 per unit of distance. _
The first 4 units does not trigger any Interpretation + Traces

deduction and the deduction for a

distance exceeding 30 units is limited
to € 2,574.
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Challenges and Results

* Profile must lead to models that are:
— understandable by both IT specialists and legal experts

— precise enough to enable model transformation and support
our objectives

— tutorials, many modeling sessions with legal experts

* In theory, though such legal requirements can be captured by
OCL constraints alone, this is not applicable

« Thatis why we resorted to customized activity modeling,
carefully combined with a simple subset of OCL

 Many traces to law articles, dependencies among articles:
automated detection (NLP) of cross-references 33
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Run-Time Verification of

Business Processes
References:

 W. Dou et al., “OCLR: a More Expressive, Pattern-based Temporal Extension of

OCL”, ECMFA 2014
 W. Dou et al., “Revisiting Model-Driven Engineering for Run-Time Verification of

Business Processes” IEEE/ACM SAM 2014
« W. Dou et al., “A Model-Driven Approach to Offline Trace Checking of Temporal

Properties with OCL”, submitted

34
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Context and Problem

 CTIE: Government Computing Centre of Luxembourg

« E-government systems mostly implemented as business
processes

 CTIE models these business processes

 Business models have temporal properties that must be
checked

— Temporal logics not applicable
— Limited tool support (scalability)

« Goal: Efficient, scalable, and practical off-line and run-time
verification 35
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Solution Overview
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Solution Overview

Design-time
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ST
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« Want to transform the checking of
temporal constraints into checking
regular constraints on trace
conceptual model

« OCL engines (Eclipse) are our target,
to rely on mature technology
(scalability)

« Defined extension of OCL to facilitate
translation

» Target: IT specialists, BPM analysts
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Analyzed 47 properties in Identity Card Management System

“Once a card request is approved, the applicant is notified within
three days; this notification has to occur before the production of

the card is started.”

Scalability: Check time as a function of trace size ...
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Schedulability Analysis and Stress
Testing

References:

 S. Nejati, S. Di Alesio, M. Sabetzadeh, and L. Briand, “Modeling and analysis of cpu
usage in safety-critical embedded systems to support stress testing,” in IEEE/ACM

MODELS 2012.
« S. DiAlesio, S. Nejati, L. Briand. A. Gotlieb, “Stress Testing of Task Deadlines: A

Constraint Programming Approach”, ISSRE 2013, San Jose, USA

« S. DiAlesio, S. Nejati, L. Briand. A. Gotlieb, “Worst-Case Scheduling of Software
Tasks — A Constraint Optimization Model to Support Performance Testing, Constraint
Programming (CP), 2014

40



ST

Problem

« Real-time, concurrent systems (RTCS) have concurrent
interdependent tasks which have to finish before their deadlines

 Some task properties depend on the environment, some are
design choices

« Tasks can trigger other tasks, and can share computational
resources with other tasks

» Schedulability analysis encompasses techniques that try to
predict whether all (critical) tasks are schedulable, i.e., meet
their deadlines

« Stress testing runs carefully selected test cases that have a high
probability of leading to deadline misses

« Testing in RTCS is typically expensive, e.g., hardware in the
loop

41
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Arrival Times Determine Deadline Misses

jo, j1, j2 arrive at at0, at1, at2 and must
finish before dl0, diI1, dI2

dlo dl1 :
_,: at ﬂ,:
| | R |

| | |

J1 can miss its deadline dI1 depending on
when at2 occurs!
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Context
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Challenges and Solutions

* Ranges for arrival times form a very large input space

« Task interdependencies and properties constrain
what parts of the space are feasible

 We re-expressed the problem as a constraint
optimisation problem

« Constraint programming

44
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Constraint Optimization

/ Constraint Optimization Problem \
4 )
Static Properties of Tasks é A

(Constants)

~ / OS Scheduler Behaviour

(" h (Constraints)

Dynamic Properties of Tasks
(Variables) \

\_ J
(

Performance Requirement
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Process and Technologies

! UML Modeling (e.g., W
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(CP)
NV
OUTPUT
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Stress Test Cases (Task arrival times likely to
lead to deadline misses)
| —_
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Challenges and Solutions (2) -S—I-—”

« Scalability problem: Constraint programming (e.g.,
IBM CPLEX) cannot handle such large input spaces
(CPU, memory)

« Solution: Combine metaheuristic search and
constraint programming

— metaheuristic search identifies high risk regions in
the input space

— constraint programming finds provably worst-case
schedules within these (limited) regions

47
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Process and Technologies

! UML Modeling (e.g., W

_ r INPUT MARTE)
System Design Design Model (Time
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Applicable? Scalable?
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Scalability examples

« This is the most common challenge in practice

e Testing closed-loop controllers
— Large input and configuration space
— Smart search optimization heuristics (machine learning)
« Fault localization
— Large number of blocks and lines in Simulink models
— Even a small percentage of blocks to inspect can be
impractical
— Additional information to support decision making?
Incremental fault localisation?

« Schedulability analysis and stress testing
— Constraint programming cannot scale by itself
— Must be carefully combined with genetic algorithms

50



Scalability examples (2) ST

« Verifying legal requirements
— Traceability to the law is complex
— Many provisions and articles
— Many dependencies within the law

— Natural Language Processing: Cross references, support for
identifying missing modeling concepts
* Run-time Verification of Business Processes
— Traces can be large and properties complex to verify

— Transformation of temporal properties into regular OCL
properties, defined on a trace conceptual model

— Incremental verification at regular time intervals
— Heuristics to identify subtraces to verify

51
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Scalability: Lessons Learned

Scalability must be part of the problem definition and solution
from the start, not a refinement or an after-thought

It often involves heuristics, e.g., meta-heuristic search, NLP,
machine learning, statistics

Scalability often leads to solutions that offer “best answers”
within time constraints, not guarantees

Solutions to scalability are multi-disciplinary

Scalability analysis should be a component of every research
project — otherwise it is unlikely to be adopted in practice

How many papers in MODELS or SAM do include even a
minimal form of scalability analysis?

52




Applicability §M

Definition?
Usability: Can the target user population efficiently apply it?

Assumptions: Are working assumptions realistic, e.g., realistic
information requirements?

Integration into the development process, e.g., are required
inputs available in the right form and level of precision?

53




Applicability examples ST

« Testing closed-loop controllers

— Working assumption: availability of sufficiently precise plant
(environment) models

— Means to visualize relevant properties in the search space

(inputs, configuration), to get an overview and focus search
on high-risk areas

« Schedulability analysis and stress testing
— Availability of tasks architecture models
— Precise WCET analysis

— Applicability requires to assess risk based on near-deadline
misses

54




Applicability examples (2) SIT

 Fault localization:

— Trade-off between # of model outputs considered versus cost of
test oracles

— Better understanding of the mental process and information
requirements for fault localization

» Run-time verification of business process models
— Temporal logic not usable by analysts

— Language closer to natural language, directly tied to business
process model

— Easy transition to industry strength constraint checker
« Verifying legal requirements
— Modeling notation must be shared by IT specialists and legal
experts

— One common representation for many applications, with traces
to the law to handle changes

— Multiple model transformation targets

55
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Applicablility: Lessons Learned

« Make working assumptions explicit: Determine the
context of applicability

 Make sure those working assumptions are at least
realistic in some industrial domain and context

« Assumptions don’t need to be universally true — they
rarely are anyway

* Run usability studies — do it for real!

56
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Conclusions

* In most research endeavors, applicability and scalability are an after-
thought, a secondary consideration, when at all considered

« Implicit assumptions are often made, often unrealistic in any context
* Problem definition in a vacuum

* Not adapted to research in an engineering discipline

* Leads to limited impact

* Research in model-based V&V is necessarily multi-disciplinary

» User studies are required and far too rare

* |In engineering research, there is no substitute to reality

57
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