
SDL based prototyping of ISDN-DECT-PBX
switching software

H.-J. Vögel+, W. Kellerer+, S. Karg+1, M. Kober+2, A. Beckert*, G. Einfalt*
+ Lehrstuhl für Kommunikationsnetze, Technische Universität München
Arcisstr. 21, D-80290 München, Germany
Tel.: +49 89 289 23503, Fax: +49 89 289 63503, {voegel, kellerer}@ei.tum.de
* Bosch Telecom GmbH, München

Abstract
Telecommunication software engineering is a highly demanding task, since these systems often have to deal with
a huge variety of features and customer specific requirements. A software engineering project set up between
Bosch Telecom and the institute for communication networks at the Munich University of Technology was cen-
tered around switching software development for a DECT-enhanced ISDN-PBX system. SDL has been applied
as the main tool for specification and implementation of the software, with an emphasis on code generation and
rapid prototyping in mind. This paper introduces the application, briefly discusses options for modelling the system
in SDL and gives an overview of the implementation’s software architecture. It further reports on the practical
experience gained with SDL during the project, with a special focus on the benefits of SDL and MSC in prototyp-
ing.

Keywords
SDL, industrial application, prototyping, telecommunication switching software, SDT

1 INTRODUCTION

Telecommunication software engineering is a highly demanding task, since these systems have to cope with di-
verse customer requirements. Particularly PBX systems must provide a huge variety of different customer specific
features. Bosch Telecom GmbH is a leading company in the provision of telecom solutions. The development of
private branch exchanges (PBX) for ISDN and DECT is one of the company’s major activities. A project has been
set up between Bosch Telecom GmbH and the institute for communication networks at the Munich University of
Technology to improve the software development for these switching systems with a special interest in rapid proto-
typing for the switching software. The Specification and Description Language SDL [1] has been chosen because
of its recommendation for telecommunications systems and its wide spread use in industry.

The remainder of this paper is organized as follows: in section 2, we briefly introduce the system setup used in
our laboratory, which is based on a slightly modified production version of a standard PBX system. Section 3 dis-
cusses in more detail the SDL modelling approach and gives an overview of the complete switching software im-
plementation. Finally, before concluding, section 4 discusses some performance issues, while section 5 elaborates
on the experience gained with our prototyping approach, dealing with the benefits of SDL and the application of
MSC techniques in particular.

2 LABORATORY SETUP: SWITCHING SOFTWARE FOR AN ISDN-DECT-PBX

The aim of the project described in this paper is twofold. First, to have a demonstration platform for teaching pur-
poses. And second, to have a versatile hardware platform ready, facilitating projects in the area of software engi-
neering techniques and rapid prototyping particularly for mid-size PBX switching systems.

1. Now with Bosch Telecom GmbH, München

2. Now with Matra Communication Cellular Terminals GmbH, Ulm

The system architecture of Figure 1 shows, how this was realized. We have a basic PBX prototyping system, con-
sisting of a slightly modified production version of a DECT-enhanced Bosch PBX [2] on the one hand and a
workstation-based software development environment on the other. Telelogic’s SDL tool SDT was chosen as our
CASE tool [3].

PBX

DECT
Fixed Part

DECT
Portable Part

SUN
Sparcstation

Point to Point

Message Broadcast

SDL
Environment

Interface (PBX)
Application

Interface (GUI)

Postmaster

Figure 1: System Architecture Figure 2: System integration with SDT Postmaster

 A standard serial interface (V.24) is used for linking the PBX to the workstation. The PBX has been stripped of
all its original switching software, leaving only a minimum of real time operating system and basic control software
running on the original platform. The major part of the switching software has been replaced by the prototyping
system running on the workstation. The message-based structure of the PBX’s real time environment easily facili-
tates this system architecture. All messages destined for the original switching software tasks are being relayed
to the workstation. The protocol and call control processing takes place in the prototype software system running
on the workstation.

The SDT Postmaster – Telelogic’s tool for the communication between the SDT components – has been used
as the central means for system integration (Figure 2). Unix processes programmed in C provide the necessary
interfaces to the serial line (environment interface to the PBX) and to potential system extensions like e.g. a Graphi-
cal User Interface (application interface to GUI) for visualization and configuration purposes. The messages re-
ceived from the PBX are being converted into SDL signals by the environment interface.
The first application of the system setup described above was to reengineer the PBX’s switching software. This
involved a new software specification and implementation from the scratch, which was done completely in SDL.

The tasks of the switching software are: control of the PBX’s hardware resources (tone generators, switching
fabric etc.), protocol processing for the interfaces to the DECT subsystem as well as to the user terminal, stimulus
processing for the user interface and call processing (implementation of the basic call state model). This involves
a number of protocols, which Figure 3 shows in a schematic protocol architecture overview. The most important
protocols are the Internal Management Protocol IM, the DECT Network Management Protocol DNM and the Ap-
plication Layer Stimulus protocol. The IM protocol is used for the control of the PBX’s switching hardware. The
DNM protocol contains the control of the DECT subsystem and the translation of the DECT lower layer air inter-
face signaling protocols [4] for the PBX, i.e. it has to perform tasks like control and configuration of the DECT
fixed parts, authentication, location registration and location updating, paging etc. The stimulus protocol is used
for signaling the user actions (basically keypress information) to the switching system and to control the portable
part’s hardware functions, like e.g. display information or ring tone selection. In addition to that, a modified data
link control protocol has been introduced, called the Application Layer Datalink Control ADLC. It is used for pro-
tecting the stimulus information elements against loss or corruption on the air interface, e.g. in critical radio condi-
tions or during handover.

3 ARCHITECTURE, SPECIFICATION AND PROTOTYPE

Specification and implementation of the protocol architecture’s workstation part was the main development proj-
ect, which is under discussion in this paper. Part of the software, like serial interface handling and the basic data
link protocol IDLC were written in the C programming language, as these protocols have more utility function
than they are part of the switching software. This piece of code is hereafter called the environment interface. Inte-

grated into this implementation of the environment interface is the application interface code (Figure 2). The high-
lighted part of Figure 3 is that part of the protocol architecture, which had to be implemented in SDL. In addition
to that the switching software system has to provide means for call setup and connection control (not shown in
Figure 3).

ADLC Application Data Link Control Protocol
DECT DECT Air Interface Protocol Stack
DNM DECT Network Management Protocol

IDLC Internal Data Link Control Protocol
IM Internal Management Protocol

IM
IDLCIDLC

IM

Figure 3: Protocol architecture Figure 4: SDL software architecture

The overall software architecture defined in the top down design process is shown in Figure 4. Messages at the
serial interface are converted from/into SDL signals by the environment interface and traded with the SDT Post-
master. The SDL-based switching software has a single central block (Signal Handler) for message reception and
distribution of the signals to the proper processes. At the same time, the Signal Handler is responsible for receiving
commands from and presenting results/data to the graphical user interface, which is connected to the system via
the environment interface. The core switching software is divided into three parts, which are rather independent
in functional respect: the control software for the peripheral hardware, the database and the mobility/call control
software.

3.1 System design overview and modelling methods

Designing and specifying telecommunication switching software is a complex task, even more so as usually there
is an oversailing system design process for the joint development of the hard- and software. There are plenty of
options available for structuring the software architecture. For example, individual protocol entities can be imple-
mented as SDL blocks with an SDL process for each of any separable protocol functions. Another means of struc-
turing is to have one SDL process per hardware entity, performing all the protocol and control functions associated
with a particular hardware entity. Furthermore, a very common technique in telecommunication systems is the
state-transition-table approach, which, based on a context vector, basically implements an extended state machine
for an arbitrary number of instantiations of a particular protocol, e.g. Q.931 user-network-interface signaling.

The software engineering approach taken in the project contains several modeling methods, all of which can be
seen in Figure 4 and Figure 5. As a structuring guideline, we took both, the entities of the protocol architecture
and the physical entities, like e.g. the DECT portable part. Consequently, we have a functional separation of proto-
col and control tasks into single SDL processes.

On the one hand, parts of the system architecture were modeled in the SDL system by directly associating SDL
processes with hardware entities. This was done for the handsets (DECT portable part PP) and the basestations
(DECT fixed part FP), where at system startup one SDL process is dynamically generated per PP and FP each.
These processes implement the functionality of the DNM protocol, which also includes challenges and responses
of the DECT air interface protocols to and from the switching software system. There also are two SDL processes
for the core PBX system, implementing the IM protocol for control of the switching functions and peripheral hard-
ware inside the PBX, i.e. specialized resources like e.g. tone generators. For the ADLC data link protocol, a single-
process implementation has been chosen. This ADLC implementation employes the state-transition-table ap-
proach, where a state vector is associated with each ADLC connection. The call modelling has been carried out
in the form of a state-transition-table with a single-process implementation, too. For each call in progress a state
vector is being initialized and controlled by the single call control process. In the end, the stimulus protocol is trans-
lated into the PP Stimulus process, responsible for encoding and decoding stimulus protocol information elements.

In addition to that, some auxiliary processes are necessary to operate the system. This in the main is the Fixed Part
Endpoint process (Figure 5), which is responsible for reading the system configuration information from the data-
base during startup and for dynamically instantiating the FP- and PP-process entities.

Figure 5: Processes of the Mobility/Call Control block

As already mentioned, an interesting technique for efficient implementation of protocol state machines is the state-
transition-table approach, used in this project to implement the ADLC and Stimulus protocol and the call control.
For implementing such an extended finite state machine, we specified an array definition for saving state vector
information and a single protocol process, which uses the SDL continuous signal to jump to the process state saved
in the state vector and branch into the correct part of the protocol processing (Figure 6). An example state vector
for the call control context of a connection is being given in Figure 7.

Figure 6: Principle of a state machine implementa-
tion in SDL

Figure 7: Call Control connection context definition

3.2 Hardware control and database implementation

To operate a telecommunication switching system, even a small scale system like the PBX at hand, a multitude
of administration and control tasks has to be performed. This ranges from the administration of a variety of periph-
eral hardware (tone generators, tone recognition devices, conferencing equipment, music output and other special-
ized resources) to the control of the time division multiplex based switching fabric. Therefore, a dedicated SDL
process has been implemented to perform either of these tasks (Dedicated Hardware Control and Switching Fabric
Control, cf. Figure 4). At system startup time, as the PBX’s real time operating system scans the hardware equip-

ment, the different components are being registered with the switching software. Through special IM registration
messages, the Dedicated Hardware Control process learns about the components available in the PBX. Thus, hav-
ing a clear picture of the configuration of the PBX at hand, the SDL process makes some preliminary arrangements,
e.g. switching specific tone generators (dial tone, alerting tone etc.) onto dedicated time slots of the switching fab-
rics for easy later availability. Naturally, the peripheral hardware control processes have to interact with other parts
of the switching system, especially the call control.

!"#$%&'() *"#+,- "+.&%,/."0+ 10% /0++&/."+# 2"#+,-"+# .0+& #&+&%,.0%2 .0 , 3,%.452 6,+72&.

An example case is depicted in the MSC of Figure 8: during call setup, the calling party needs to be connected
to different types of tones, in particular the dial tone and the alerting signal or the busy signal. Therefore, the Call
Control process requests a desired tone to be connected to a particular terminal by the Switching Fabric Control
process, which in turn instructs the Signal Handler process to assemble an IM command (KF_SET) and send it to
the PBX.

Figure 9: Internal database structure Figure 10: Updating of a database record

A very important central resource of the switching software is the system database. At the moment this database
contains three tables, namely the Fixed Part Database, the Portable Part Database and the Location Database.
During the initialization phase at system startup, the database is being read from ASCII files. From then on it is
maintained as memory data structures, with changes made to the database during runtime immediately being writ-
ten out to the hard disk. The FP table holds information about the system’s hardware configuration, while the PP
database contains identities and keys for the DECT handsets registered with the system (e.g. International Portable
User Identity IPUI, Temporary Portable User Identity TPUI, User Authentication Key UAK, phone number associ-
ated with the handset). The database is implemented using the SDL-92 object-oriented approach (Figure 9). At
the moment, the implementation consists of a single DBHandler process and three DataBase processes, one for
each table. The DBHandler receives all requests to the database, handing them over to the correct DataBase pro-
cess. The DataBase process in turn holds the corresponding data structure, which is organized as a chained list
based on an Abstract Data Type supplied with the SDL tool. These processes perform the core database functions,
like searching and retrieving records, updating fields in a record or deleting entries from the database. An example
for the signaling at the database block’s control interface is given in Figure 10, which shows the updating procedure
for a specific record.

3.3 Call and Mobility Control

The call and mobility control processes are the switching software in the very sense of the word. They, at a very
high system level point of view, control the processing of basic calls. To perform this complex task, they have to
rely on services provided by other parts of the switching system and consequently have an elaborate interface for
close cooperation with other processes (hardware control, database). The call/mobility control block analyses
signaling information elements coming in from a portable part via an ADLC connection in the PP Stimulus process.
Depending upon the contents of the stimulus elements, in the main actions are being taken in the FP/PP process
for mobility control and in the Connection process for call control.

!"#$%&'88) 90%.,:-& 9,%. ;+%0-<&+.

Most of the mobility control functions are performed without a call being active. They include functions like au-
thentication and enrolment of portable parts, allocation and assignment of temporary identifiers (DECT TPUI) and
location updating. An example signaling transaction is shown in Figure 11 displaying the principle enrolment of
new handhelds in the system. For fraud protection reasons, in DECT PBX systems every handheld has to be regis-
tered in a local system to be able to place and receive phone calls. This registration process, called enrolment, is
normally performed by the DECT fixed part. In our system, it necessitates services from the switching software
(FP process and database). To register with the system, the portable part has to know the system’s access code AC.
Upon a registration attempt, this access code is being retrieved from the PP’s (preconfigured) database record and
sent to the fixed part, which then is able to perform the enrolment. After successful enrolment, the DECT lower
layer protocols generate a new access rights key UAK for that specific PP. This UAK is then stored in the database
and the corresponding PP receives a notification about the UAK change.

!"#$%&'8=) >,-- >0+.%0- 2.,.& .%,+2"."0+ 7",#%,<

The Connection process performing the call control functions implements the basic call state model of Figure 12.
It is designed as an extended finite state machine using the state transition table approach. There are always two
different call segments, the calling party segment and the called party segment. Consequently, for each complete
call, there are at least two state vectors (cf. Figure 7) being generated. To perform its task, the Connection process
closely interacts with several processes. It receives requests (setup request, target number info request etc.) from
the SDL processes corresponding directly to the handsets (PP Process). It sends commands to the processes con-
trolling the peripheral hardware and the switching fabric, e.g. to connect signaling tones or make adjustments to
the switching fabric.

3.4 Further Applications

The specification and implementation of the basic switching architecture was the first application of the prototyp-
ing setup. Several projects have been carried out afterwards using the same environment and also the main parts
of the switching architecture that is described in this paper. In the following we will report on some related research
projects, where the prototyping setup is being used in.

A graphical user interface was developed to support the administration and visualization of the switching soft-
ware [7]. This GUI allows to start and stop all parts of the software system conveniently and realizes remote control
functions for the SDT system. It is possible to record signaling sequences during the run of the system and to ana-
lyze them afterwards in an off-line mode. Visualization of the signaling between the PBX and the switching soft-
ware is another feature of the GUI. We have realized a detailed protocol analyzer, a database observer and an MSC
visualizer. In addition to that the GUI has been designed as a specialized front end for the SDT simulator with prede-
fined and editable messages. The GUI is realized with the scripting language Tcl/Tk [8] and connected via a socket
interface to the environment/application interface of the system.

To enhance the functionality of the switching system with new services we applied the concept of Intelligent
Networks (IN) [9] to the basic switching software. The main idea of the IN is the separation of basic switching
functionalities and the control of supplementary services e.g. call forwarding or abbreviated dialing. This reduces
complexity when integrating new features into the system. To validate this approach two different prototypes were
implemented.

In both cases the supplementary service control (associated with a Service Control Point SCP) was strictly sepa-
rated from the basic switching system (Service Switching Point SSP) according to the principles of the IN. For this
reason the call control had to be redesigned to support the IN call model and service switching functionalities.

One prototype was to realize the SCP in another SDL system connected via the postmaster to the basic switching
system [10]. The other prototype used Java for the implementation of the service control [11]. For the connection
to the Java-SCP an additional “application interface” had to be built. Figure 13 shows an overview of both ap-
proaches.

Beneath the projects described above, further research projects are planned using the prototyping setup. It is in-
tended to enhance the switching software with more mobility functions e.g. handover between neighboring fixed
parts. For teaching purposes the prototype platform is going to be prepared to serve not only as a demonstration
platform but can also be used for prototyping by student themselves in short exercises to show the benefits of SDL
usage in system engineering. This leads to an extension of the laboratory course “system engineering using SDL”
which is held at the institute of communication networks [12].

!"#$
%&%'()

!"#$
%&%'()

%*+',-+./$
%&%'()
0!!12

%(34+,(
,5.'356
75+.' 0!81219:

;<=

!"#$%&'()*'(+,

>?4?$!81

-.(+,/*0+'

122340*(4&.

5.64,&.)+.(

Figure 13: Related research projects: GUI and separated service control (SCP) done in SDL and in Java

4 PERFORMANCE ISSUES

The arrangement of the prototyping system has several advantages in the software development process. Most of
all, no cross-compilation is necessary for runtime testing of the software system specified with SDL. The whole
system can be operated with the switching software running as a UNIX task on the workstation. Telephone calls
for testing purposes can be made with the SDL system running in a simulator environment, with the possibility
to display MSC trace information while the PBX is being operated. This integrated approach to specification, im-
plementation and testing greatly speeds up software development and shortens test cycles. At the same time, no
great requirements are imposed on the development system: we used a SUN sparcstation 4 from SUN microsys-
tems with 64 Mbyte of memory and a Sparc processor running at 110 MHz clocking frequency.

 The performance and real-time requirements imposed by the switching hardware, like e.g. hardware timers in
the telephone handsets for the ADLC, could be met for single call scenarios. Problems like lost signaling messages
came up when two or more handsets tried to log on at the same time – the transaction rate provided was too low,
due to the system running in simulation mode.

To get an overview of the system’s size and complexity some figures about number of SDL processes and SDL
procedures are given in Table 1.

Block No. of processes No. of procedures
Peripheral control 2 2
Database 4 13
Call & mobility control 6 16
Signal handler 1 0

Table 1: Software metrics: SDL processes and procedures

The prototype has not been designed for efficient code generation for the implementation on certain microcontrol-
ler environments of the PBX hardware platform. Case studies at Bosch Telecom resulted that the generated C-code
using SDT Cbaisc code generator is too large to fit for PBX’s processors. In fact Bosch Telecom is using SDL for
the implementation of protocols on their platforms. The SDT Cmicro code generator is used for this purpose. This
means that the use of SDL is restricted in the way that not all SDL techniques and symbols can be used. In the case
of our laboratory system, several modifications in the SDL specification would be necessary in order to generate
target code for the step from prototype to product. The next chapter will give a more detailed discussion of SDL
and prototyping.

5 PROTOTYPING USING SDL

Prototyping within software engineering is part of the software development life cycle and describes the rapid im-
plementation of certain parts of a system or the whole system itself on a platform which is not necessarily identical
with the final platform. Prototyping is a means for the evaluation of system requirements or the evaluation of deci-
sions in system design. The industrial application described above focused on the latter case: functional evaluation
of software for a complex switching system. In that way the prototype has not been built for performance testing
reasons but for the validation of the software architecture realizing the switching system and its functionality.

5.1 Benefits of SDL for prototyping

The use of SDL for specification and the use of valuable tools for SDL-based prototyping for the industrial applica-
tion has been motivated due to two main advantages. SDL reduces time of development for prototyping since spec-
ification, design and coding are done in one language. This is a decisive point for rapid prototyping confirmed by
the experiences gained during the project. Beneath that, CASE tools for SDL-based development provide features
not only for specification, design and simulation but also for system implementation. Thus, it is possible to use
the SDL-prototype as the basis for the implementation of the system on the final hardware platform (evolutionary
prototyping). Depending on the target system the generated code has to be modified to meet the performance re-
quirements.

Time of development for the whole prototype SDL switching system was about only 16 man months, including
training on SDT and the PBX system. This is very short compared to conventional development of systems of the
same complexity. The use of SDL in combination with CASE tools provides one notation for the phases of develop-
ment. This supports and speeds up development cycles since specification, design and coding are always kept con-
sistent. In conventional prototyping different notations or programming languages are used in each step of develop-
ment. This makes it difficult to implement new design ideas or advanced functionality in a prototype when even
before the functionality could be validated the use of certain languages forces a redesign due to implementation
issues. In this way SDL supports top-down design in an excellent way. Figure 14 illustrates the comparison of SDL
based prototyping with conventional prototyping (see also [13]).

problem description, requirements

specification

design

implementation

coding

prototype

SDL based prototypingtraditional prototyping

specification,
design,
coding

simulation = prototype

MSCSDL

C++ automatic generation

Figure 14: Prototyping for functional evaluation using SDL

Another advantage of SDL lies in its graphical representation, which made it easy for the development team to
share specifications and work in parallel on the system. Due to formalized interface descriptions in SDL the re-
quirements stated by the switching system’s protocol stack were easily realized in the prototype. SDL is the best
choice for the specification of even large protocols. That was especially true for the complex call control that had
to be designed for the switching system.

A fact that also should be mentioned here is the aspect of teaching. The graphical specification and structuring
methods of SDL greatly helps the students to understand, how telecommunication switching systems work. Even
without the graphical user interface that was built in a related project the prototype served as an excellent demon-
stration system to show the complexity of the system and all message passing that lies behind just calling another
telephone handset.

5.2 Application of and experiences with MSC

At the Bosch development site in Munich, MSC are used in all stages of the development process. When a new
project based on an SDL system is set up, MSC are used for specification purposes. After a crude design of the
system in SDL at block level, the information interchange between the components of the system is developed
using MSC. As a result the communication links between the processes are determined and specified as well as
the signal interface to the SDL environment and the system’s internal protocols.

In the next step a verification of the design (design review) takes place. Now the system design is verified by
checking the specification MSCs against the system requirements. An additional exemplary check of error situa-
tions is done to determine if the proposed system is able to cope with erroneous situations or if a redesign for parts
of the system is necessary. Thus it is ensured that the system design has no severe flaws and that all the necessary
functions are implementable.

During the implementation stage of the system, the behavior of the system or a set of system components is
checked by interactive system testing. As a result MSCs of the simulations are written in real time, both on the
host and in the target system. Those are checked against the specification MSCs to ensure the implementation com-
plies to the specified behavior.

In the final stage MSC of all the testcases are produced and stored for documentation purposes as required by
the Bosch guidelines for quality management. The MSC-diagrams give evidence to the fact that the system meets
the requirements.

6 CONCLUSION

We have presented our laboratory setup for rapid prototyping based on a slightly modified production version of
the Bosch Telecom DECT-enhanced PBX system. A brief discussion of the software modelling approach and of
the system architecture gave an overview of the switching software implementation. SDL and MSC techniques
have proven highly beneficial in this kind of application and development environment.

!"#$%&'()*)+)$,-

The authors would like to thank the company Bosch Telecom for the support during the project as well as for prepar-
ing excellent interfaces for the prototyping system to the PBX hardware. We thank all our colleagues for many
lively discussions and for providing valuable assistance.

.)/).)$")-

?8@ ABCDB E&/0<<&+7,."0+ FG8HH) I*3&/"1"/,."0+ ,+7 J&2/%"3."0+ K,+#$,#& L*JKMNO ABCDBO P&+&Q&O
8RRSG

?=@ T02/6 B&-&/0<) IAS B&/6+"2/6&2 U,+7:$/6NO T02/6 B&-&/0<O 8RRVG
?S@ B&-&-0#"/) I*JB SGH= E&1&%&+/& W,+$,-NO B&-&-0#"/ XTO W,-<YO *Z&7&+O 8RRVG
?[@ ;B* SHH 8\]) IE,7"0 ;^$"3<&+. ,+7 *42.&<2O J"#".,- ;$%03&,+ >0%7-&22 B&-&/0<<$+"/,."0+2

LJ;>BM >0<<0+ A+.&%1,/&NO ;B*AO 8RR=G
?]@ *G _,%#) I;+.Z"/`-$+# Q0+ *42.&<201.Z,%& $+7 *JKD:,2"&%.&% E$1D $+7 W0:"-".a.22.&$&%$+# 1b% &"+&

A*JcD9XTd <". J;>B ;%Z&".&%$+#NO J"3-0<,%:&". ,< K&6%2.$6- 1b% _0<<$+"`,."0+2+&.e&O B&/6D
+"2/6& C+"Q&%2".a. Wb+/6&+O 8RR\G

?V@ WG _0:&%) I*JKD:,2"&%.& ;+.Z"/`-$+# Q0+ E&220$%/&+2.&$&%$+#O *."<$-$23%0.0`0-- $+7E$12.&$&%$+#
1b% &"+& A*JcD9XTd<". J;>B ;%Z&".&%$+#NO J"3-0<,%:&". ,< K&6%2.$6- 1b% _0<<$+"`,."0+2+&.e&O
B&/6+"2/6& C+"Q&%2".a. Wb+/6&+O 8RR\G

?\@ fG T%$<<&%) N;+.Z"/`-$+# &"+&2 T&7"&+`0+e&3.&2 $+7 A<3-&<&+."&%$+# &"+&% #%,36"2/6&+ T&+$.e&%D
0:&%1-a/6& 1b% &"+& J;>BDc&:&+2.&--&+,+-,#&NO J"3-0<,%:&". ,< K&6%2.$6- 1b% _0<<$+"`,."0+D
2+&.e&O B&/6+"2/6& C+"Q&%2".a. Wb+/6&+O 8RR\G

?(@ gG h$2.&%60$7) IB>K ,+7 .6& B_ .00-`".NO X77"20+Df&2-&4O 8RR[G
?R@ ABCDB E&/0<<&+7,."0+2 iG8=jj) IA+.&--"#&+. c&.Z0%` *&%"&2NO ABCDBO P&+&Q&O 8RRSG
?8H@ 9G _03&.e`4) I;+.Z"/`-$+# &"+&% AcD:,2"&%.&+ E$1D $+7 K&"2.$+#2<&%`<,-2.&$&%$+# 1b% &"+& A*JcD

J;>BD9Td $+7 E&,-"2"&%$+# &"+&2 *>9 "+ *JKNO J"3-0<,%:&". ,< K&6%2.$6- 1b% _0<<$+"`,."0+D
2+&.e&O B&/6+"2/6& C+"Q&%2".a. Wb+/6&+O 8RR(G

?88@ fG f&"k) I;+.Z"/`-$+# &"+&% AcD:,2"&%.&+ E$1D $+7 K&"2.$+#2<&%`<,-2.&$&%$+# 1b% &"+& A*JcD
J;>BD9Td $+7 A<3-&<&+."&%$+# &"+&% J"&+2.2.&$&%$+# <". g,Q,NO J"3-0<,%:&". ,< K&6%2.$6- 1b%
_0<<$+"`,."0+2+&.e&O B&/6+"2/6& C+"Q&%2".a. Wb+/6&+O 8RR(G

?8=@ fG _&--&%&%l XG X$.&+%"&.6l XG A2&-.) I*JK :,2&7 3%0.0/0- &+#"+&&%"+# ,+7 Q"2$,-"e,."0+ 10% &7$/,."0+)
A*Jc iGRS8 /,2& 2.$74NO 2$:<"..&7 .0 !hEB;m9*Bn5R(G

?8S@ fG _&--&%&%l XG A2&-.l EG E"&`) IC2"+# *JK 10% .6& 23&/"1"/,."0+O 2"<$-,."0+ ,+7 "<3-&<&+.,."0+ 01 ,+
,7Q,+/&7 h*A 7,.,D-"+` 3%0.0/0- 0+ ,+ &<:&77&7 <"/%0/0+.%0--&% 242.&<NO "+ P0.e6&"+ EGO T%&7&%&`&
gG L;7.2GM) !0%<,- J&2/%"3."0+ B&/6+"^$&2 Ad) B6&0%4O ,33-"/,."0+ ,+7 .00-2 L9%0/&&7"+#2 01 !hEB;m
9*Bn5RVMO >6,3<,+oU,--O 8RRVO 33G [8RD[S[G

?8[@ ABCDB E&/0<<&+7,."0+ FG8=H) IW&22,#& *&^$&+/& >6,%. LW*>MNO ABCDB O P&+&Q&O 8RRSG

