
SAM98

The development of the MSC language - past and future

The development of the MSC language - past and
future

Ekkart Rudolph

Institut für Informatik, Technische Universität München,
D-80290 München, Germany
rudolphe©informatik.tu-muenchen.de

SAM98

The development of the MSC language - past and future

neutron

proton neutron

proton

vitual pion

neutron

proton neutron

proton

vitual pion

u d d

u ud

u d u

d d u

Feynman Diagram with refinement
of protons and neutrons into quarks

Flow diagrams in physics:

History

SDL-Forum Lisbon, October 1989:
First suggestion for MSC standardization

CCITT-Meeting in Helsinki, June 1990:
MSC standardization decided

CCITT-Meeting in Recife, December 1991:
Form of Z.120 adjusted to Z.100
Approval within study group

CCITT-Meeting in Geneva, May 1992:
Closing session of the study period:
Approval of recommendation Z.120

ITU-TS Meeting in Geneva, November 1993:
Revised version of Z.120 (minor corrections)

ITU-TS Meeting in Geneva, October 1994:
Formal dynamic semantics definition as Annex B to Z.120:
Message Sequence Charts Algebraic Semantics

ITU-TS Meeting in Geneva, September 1995:
Formal static semantics definition as Annex C to Z.120:
Static Semantics of Message Sequence Charts

ITU-TS Meeting in Geneva, April 1996:
Closing session of the study period:
Approval of new recommendation Z.120

SAM98

The development of the MSC language - past and future

SAM98

The development of the MSC language - past and future

Extended Sequence Charts

 SDL - Forum in Lisbon, October 1989
(J. Grabowski, E. Rudolph: Putting Extended Sequence Charts to Practice)

 and CCITT experts meeting in Copenhagen, April 1990
(ESC 90)

Beginning of MSC standardization:

ENV INITIATOR CODER_INI MEDIUM CODER_REC RECEIVER ENV

ICONreq

CR_macro CR ICONind

(T)

counter <4

Yes

ICONresp

CC

number := 0

MDATreq

CR_macro CR ICONind

waitwait

interruptedinterrupted

waitreadyreadywait

SAM98

The development of the MSC language - past and future

 CCITT experts meeting in Copenhagen, April 1990

Beginning of MSC standardization:

MSC composition using operators

init

counter
 <4

conreq_ini

Yes

no

nack

conreq_rec

con_conf

SEQ

ALT ALT counter =counter +1

timeout = TRUE

SEQ
couter = 1
timeout = FALSE

con_set_up

SAM98

The development of the MSC language - past and future

disconnected

SDL Methodology Guidelines 1992

Description of MSC composition by means
of an MSC overview diagram

Disconnection_c

Connection _request

wait

timeout

Disconnection_b

Connection_confirm

Timeout

Disconnection_a connected Data_transfer

Rudimentary forms of HMSC:

SAM98

The development of the MSC language - past and future

SDL Methodology Guidelines 1992

Rudimentary forms of HMSC:

Functional decomposition - the Verilog variant

switching
system

Key

=

•

•

 call
handling

 call
handling

normal
 call

forwarded
 call

dialing conversation disconnection ring conversation disconnection

exception
handling

a terminal function

a global function

an abstract function

SAM98

The development of the MSC language - past and future

Semantics of synchronous interworkings based on process
algebra

Petri Net based semantics using a special Petri Net class,
namely causal or occurrence nets

Semantics based on graphs, Buechi automata and temporal
logic

Interims Meeting in Geneva, November 1992

Formal semantics:

SAM98

The development of the MSC language - past and future

msc CCBS_extract

ACTIVATION

CCBS_Idle

CCBS_Requested

CCBS_Activated

REQUEST

RELEASE

REJECT

High Level MSC describing the composition
of MSCs based on global conditions

SAM98

The development of the MSC language - past and future

msc REQUEST

User_A

Request FACILITY
(Request_Inv)

Request_ReqInd

Network_A Network_B

CCBS_Idle

CCBS_Requested

msc REJECT
User_A

FACILITY
(Reject)

Reject

Network_A Network_B

CCBS_Requested

CCBS_Not_Activated

CCBS_Idle

msc ACTIVATION
User_A

FACILITY
(Request_RR)

Request_RespConf

Network_A Network_B

CCBS_Requested

CCBS_Activated

CCBS_Activated

msc RELEASE
User_A

Release_Reqind

Network_A Network_B

CCBS_ ACTIVATED

CCBS_Idle

msc CCBS_SERVICE

ACTIVATION

CCBS_Idle

CCBS_Requested

CCBS_Free

CCBS_Init

CCBS_Activated

REQUEST

MONITORING

INVOCATION

RELEASE

REJECT

CANCEL

DEACTIVATION

The development of the MSC language - past and future

SAM98

The development of the MSC language - past and future

 Hierarchical HMSC

msc MONITORING

CCBS_Activated

CHECK_STATUS_B

USER_B_Busy

Status_Check_A

CCBS_Free

User_A_Free

SUSPENSION monitoring
of user A

REPLY_B_BUSY

REPLY_B_FREE

REPLY_B_STILL_FREE
REPLY_A_BUSY

REPLY_A_FREE recall

CCBS_Await_Status
User_A_busy

SAM98

The development of the MSC language - past and future

 msc flop

InitiatorUser_Ini Responder

ICONreq

IDISind

message_lost alt time_out

loop

SAM98

The development of the MSC language - past and future

Inline expression and MSC reference expression

msc DEACTIVATION_DECOMP

User_A

Deactivate_Req

CANCEL_Reqind

Network_B

CCBS_Requested, CCBS_Activated, CCBS_Free

Deactivate_Conf remove from queue

release B_channel

decomposed as USER_A_DECOMP

CCBS_idle

msc USER_A_DECOMP

User_A

Deactivate_Req FACILITY
(Deactivate_Inv)

CANCEL_Reqind

Network_A

Release_CCSB_ID

Deactivate_Conf

CCBS_Requested, CCBS_Activated, CCBS_Free

CCSB_Idle

SAM98

The development of the MSC language - past and future

Instance decomposition and generalized ordering

SAM98

The development of the MSC language - past and future

msc BASIC /*basic concepts in a nutshell*/

instance_A
instance_B
process p

init_cond

instance_C

T1

T1

final_cond

intermediate_cond

local_cond

this is
an action

m0(parameter)

m4

m2
m3

m5

m6

m7

m8

m8

m9

specific
comment

general
comment

m1

Basic concepts

msc opt_inline_expression

instance1 instance2

m1 m1

opt

instance1 instance2

out_m1 in_m1

m1

endinstance1 endinstance2

skip

SAM98

The development of the MSC language - past and future

Inline expression containing a deadlock

msc setup_attach

data_transmission

failure connection

connect_request

msc connect_request

Initiator Responder

alt

T

T

T

failure

connection

con_req data(con_req) con_ind

con_respdata(con_resp)

SAM98

The development of the MSC language - past and future

Conditions as guards

Open items to Z.120 to be studied
Below we have listed a number of areas where we know that further study of MSC could improve MSC in the
future. The points listed below the area headlines are examples of what subjects we would study under the
area, but those subjects are not meant to be excluding other topics in the areas.

1. Non-functional properties
- real-Time descriptions such as duration
- quality of Service properties such as performance, error rates etc

2. Methodology
- use of MSC in object-oriented modelling e.g. formalizing use cases
- test case specifications
- issues related to the use of MSC in close connection with SDL e.g. timer parameters

3. Data concepts
- use of formal data definitions in messages, parameters, conditions and actions

4. Grammars and exchange formats
- improvement of the graphical grammar based e.g. on the study of graph grammar
 formalisms
- revision of textual grammars including the production of a Common Interchange
 Format for MSC

5. Conditions
- strong global condition concept
- general predicates in conditions
- further investigation of the relation between composition mechanisms based on
 conditions and those based on process algebra operators

6. Other language issues
- remote procedure
- synchronous communication construct
- grouping of instances
- hierarchy of messages
- additional MSC operators e.g. disruption, interruption
- total ordering of events
- gates in HMSCs

SAM98

Question 9 - working program (study period 1997 -2000)

The development of the MSC language - past and future

SAM98

The development of the MSC language - past and future

• Control logics
 1. Formal description of data
 2. Guards on expression alternatives
 3. Break-out of loops
 4. Continuation conditions

• Decomposition
 1. Inline expressions and decomposition
 2. MSC references and decomposition
 3. Conditions and decomposition
 4. Interface of the decomposition
 5. Decomposition of messages
 6. Defining a hierarchy of instances

• Advanced communication primitives
 1. Message multicast
 2. Synchronous messages
 3. Remote procedures
 4. Broadcast

• Real time constructs

MSC-2000

m1

msc instance_decomposition

g1

msc sys1
instance1 instance2

m2

m1 g2

g2

decomp

sys1

m1 g4
g3

m1 g3

SAM98

The development of the MSC language - past and future

Instance decomposition described by an MSC reference

opt ()
 ob1:C1

 ob3:C3

 ob2:C2

 ob4:C4

[X>0] foo(x)

[X<0] bar(x) doit(z)

doit(w)

object

synchronous message

guard condition

return
termination

object life line

life line branching

activation

message branching

object calls itself

oject creation

more()

SAM98

The development of the MSC language - past and future

UML - Sequence Diagram

opt ()
 ob1:C1 ob3:C3

 ob2:C2

 ob4:C4

[X>0] foo(x)

[X<0] bar(x)

doit(z)

doit(w)

more()

return()

return()

return()

alt

return()

msc example

return()

return()

The development of the MSC language - past and future

SAM98

Transformation into extended MSC-96

opt ()
 ob1:C1 ob3:C3

 ob2:C2

 ob4:C4

[X>0] foo(x)

[X<0] bar(x)

doit(z)

doit(w)

more()

alt

msc example2

The development of the MSC language - past and future

SAM98

Transformation into extended MSC-96
without construct for remote procedure call

SAM98

The development of the MSC language - past and future

MSC Quo Vadis?

 Message Sequence Charts

 Or

 Messy Sequence Charts

