Performance Engineering of SDL/MSC Systems

Andreas Mitschele-Thiel Universität Erlangen-Nürnberg

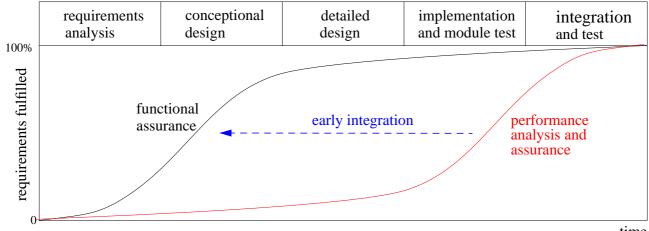
mitsch@informatik.uni-erlangen.de http://www7.informatik.uni-erlangen.de/~mitsch

Bruno Müller-Clostermann Universität GH Essen

bmc@informatik.uni-essen.de http://www.cs.uni-essen.de/Fachgebiete/SysMod/

- 1. Principles and Techniques of Performance Engineering
- 2. Introduction into SDL and MSC
- 3. SDL/MSC-Based Performance Engineering
- 4. Tools for SDL- and MSC-Based Performance Engineering
- 5. Concluding Remarks
- 6. Further Readings

Performance Engineering of SDL/MSC Systems


Andreas Mitschele-Thiel

Bruno Müller-Clostermann

1 of 30

1. Principles and Techniques of Performance Engineering

Problem Statement

time

late consideration of performance aspects

- ► late detection and correction of performance problems
 - → high cost for redesign
 - gradual destruction of system architecture

Performance Engineering - What's that?

Some Definitions:

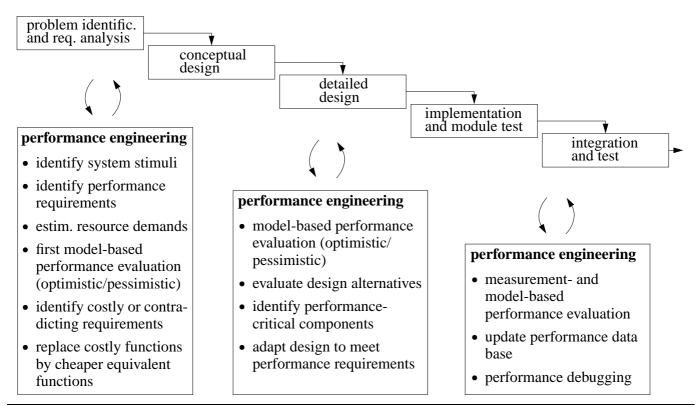
- Methods and techniques to effectively derive efficient systems
- Integration of performance issues in the systems engineering process

Two Important Subtasks of Performance Engineering:

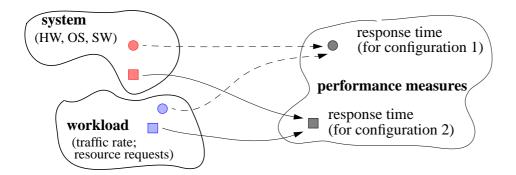
- derive performance measures (performance evaluation)
 - •performance modelling
 - •performance measurements
- control the systems engineering process to develop efficient and cost-effective systems
 - •identify performance-critical parts
 - •deal with performance critical-parts appropriately (design and implementation)

Literature: Connie Smith, Performance Engineering of Software Systems, Addison Wesley, 1990

Performance Engineering of SDL/MSC Systems


Andreas Mitschele-Thiel

Bruno Müller-Clostermann


3 of 30

1. Principles and Techniques of Performance Engineering

Performance Engineering in the Development Process

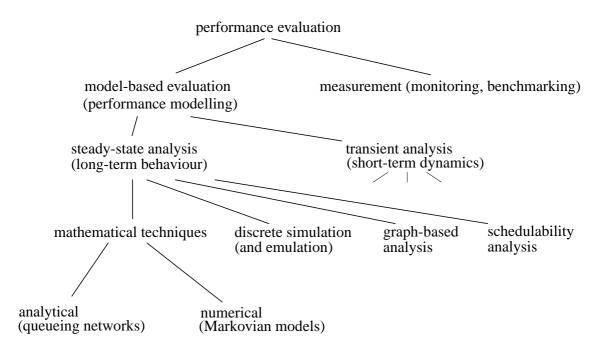
Performance Measures as a Function of 'System' and 'Workload'

We have an abstract function

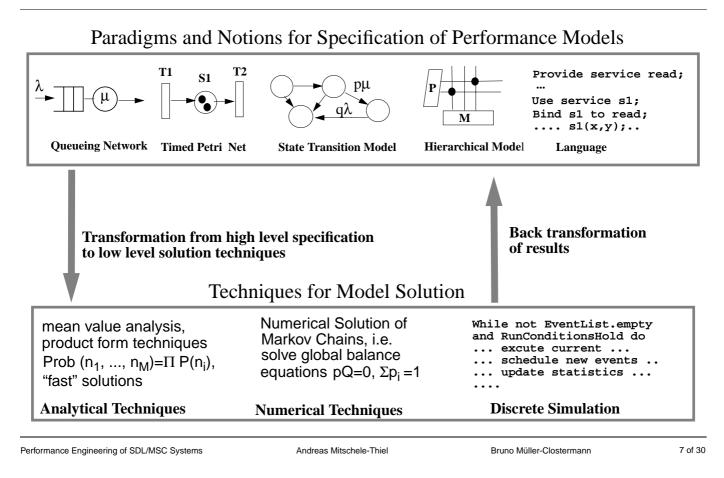
f(system, workload) --> performance measures

- system may include hardware, operating system, overhead and application software
- workload includes traffic characteristic (external stimuli) and resource requests
- system and workload may be real objects or abstract descriptions
- function f is derived employing techniques and tools from the field of performance evaluation

```
Performance Engineering of SDL/MSC Systems
```

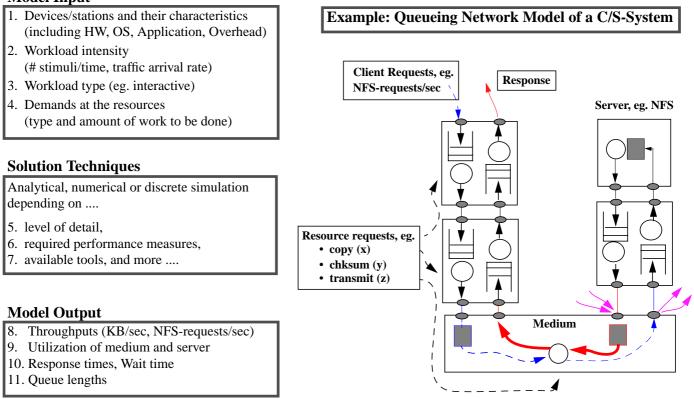

Andreas Mitschele-Thiel

Bruno Müller-Clostermann


5 of 30

1. Principles and Techniques of Performance Engineering

A Classification of Performance Evaluation Techniques



Literature: Raj Jain, The Art of Computer System Performance Analysis, Wiley, 1991

1. Principles and Techniques of Performance Engineering

Model Input

Steps of Performance Modelling

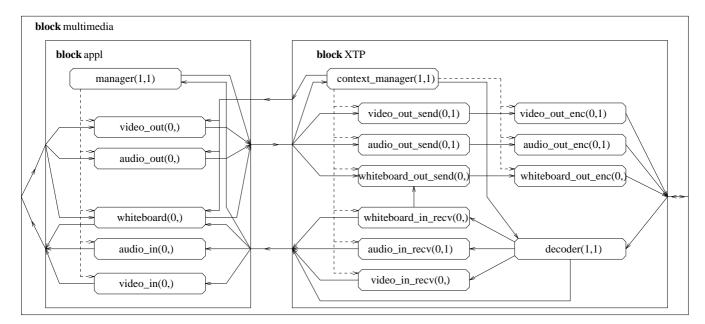
- 1. Understand the object of your investigation, either existing or under design, as well as possible (hard task).
- 2. Predict the workload imposed on the system and build a workload model (very hard task).
- 3. Build a performance model, i.e. map your "mind model" into a meaningful or "equivalent" performance model (hard task).
- 4. Transform the performance model to an executable assessable model (can be done automatically).
- 5. Execute/analyse the model and derive performance measures (easy task, automatic).
- 6. Check whether your performance measures do meet your performance goals.
- 7. Modify your system design and restart.

Preview with respect to the SDL/MSC context

- Step 1 is supported by SDL/MSC.
- Step 2 is supported by MSC (use cases) and SDL signal list.
- Step 3 is supported by SDL/MSC methodology including implementation design.

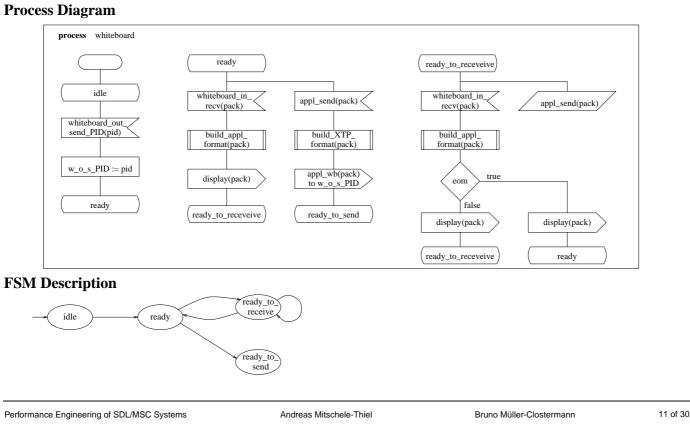
Performance Engineering of SDL/MSC Systems

Andreas Mitschele-Thiel


Bruno Müller-Clostermann

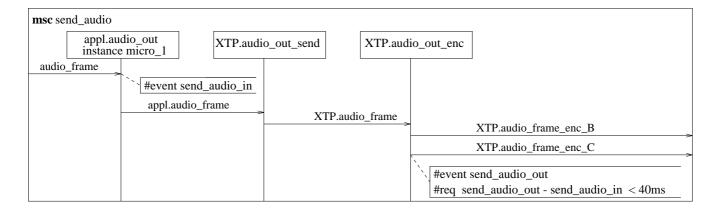
9 of 30

2. Introduction into SDL and MSC


Specification and Description Language (SDL, ITU-T Z.100)

Block Diagram

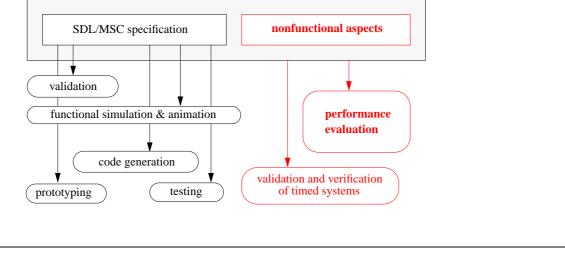
2. Introduction into SDL and MSC


Specification and Description Language (SDL)

2. Introduction into SDL and MSC

Message Sequence Chart (MSC, ITU-T Z.120)

Sequence Diagram



3. SDL/MSC-Based Performance Engineering

Purpose of SDL/MSC

A system specified with standard SDL/MSC may serve as a basis for

- verification and validation,
- functional simulation and animation,
- code generation, prototyping,
- testing, and more.

Performance Engineering of SDL/MSC Systems

Andreas Mitschele-Thiel

13 of 30

3. SDL/MSC-Based Performance Engineering

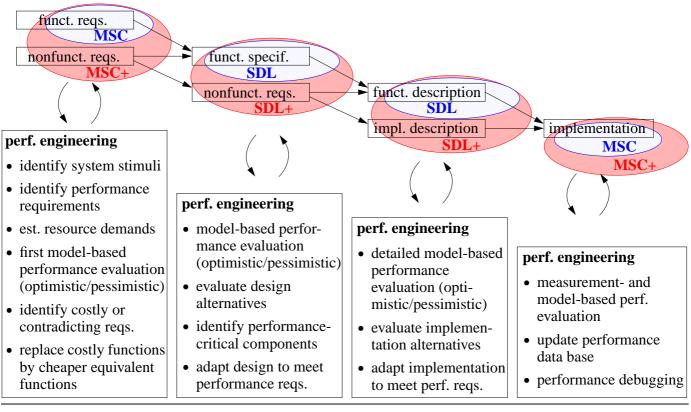
Additional Information Needed for SDL/MSC-Based Performance Engineering

SDL and MSC

- do not cover nonfunctional aspects (time, delay, cost)
- abstract from implementation details (model ideal world, not real physics with delays, limited resources and errors)

Information not covered by standard SDL and MSC

- system stimuli (arrival process)
- available (limited) resources: processors, links, memory, strategies to handle contention
- resource demands: computation and communication cost, memory
- implementation decisions: SW configuration (code generation strategy, etc.), mapping on hardware, HW/SW partitioning
- performance sensors
- performance requirements


Prerequisites for SDL/MSC-based Performance Engineering

- identification and formal description of missing information
- association of information with functional information given by SDL/MSC specification (question: where and how to specify the added information?)

Bruno Müller-Clostermann

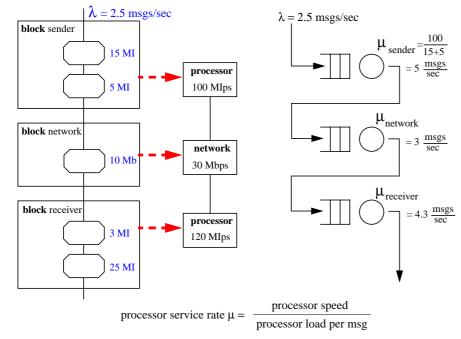
3. SDL/MSC-Based Performance Engineering

Performance Engineering with SDL/MSC

Performance Engineering of SDL/MSC Systems

Andreas Mitschele-Thiel

Bruno Müller-Clostermann


15 of 30

3. SDL/MSC-Based Performance Engineering

Performance Modelling with SDL/MSC

Example 1: Queueing Model Derived from an SDL Specification

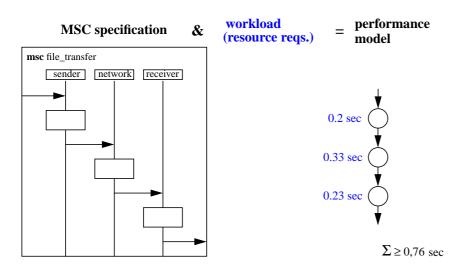
SDL specification & workload & machines & mapping = performance model

Analytical queueing network

- analysis provides mean values for
- delays, utilizations,
- queue lengths and population

for certain model classes, here: utilization $\rho_{network} = 83,3\%$ total delay T = 2.96 sec total population N = 7.4 msgs

Restrictions are:


- no general distributions,
- no synchronizations,
- no blocking, etc.

For these cases,

- numerical Markov analysis or
- discrete simulation
- may be applied.

Performance Modelling with SDL/MSC (cont'd)

Example 2: Critical Path Analysis with MSC

Simple task graph analysis provides

- response time (optimistic case) for different workload scenarios (MSCs)
- with deterministic or exponential service times

More detailed analysis of superimposed workloads with

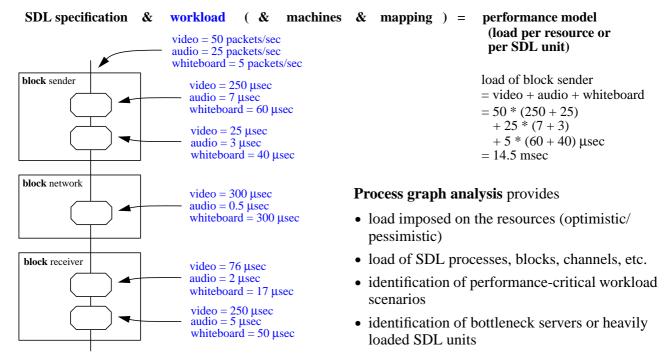
- derivation and analysis of schedule
- schedulability analysis
- simulation of a set of MSCs (pessimistic case)

Extensions to the simple performance model:

- add mapping on resources and resulting sequentialisation constraints
- add scheduling strategy and superimpose several workload scenarios

```
Performance Engineering of SDL/MSC Systems
```

Andreas Mitschele-Thiel


Bruno Müller-Clostermann

17 of 30

3. SDL/MSC-Based Performance Engineering

Performance Modelling with SDL/MSC (cont'd)

Example 3: Bottleneck Analysis with Process Graph Derived from SDL Specification

4. Tools for SDL- and MSC-based Performance Engineering

Overview of Approaches

- Petri Nets Approach: SDL to **SDL-net**, SDL to Queueing Petri Nets (QPN)
- Defining blocks as executing machines: SPECS (SDL Performance Evaluation of Concurrent Systems)
- Execution of generated code on emulated target hardware (SPEET: SDL Performance Evaluation Tool)
- Mapping SDL to full-fledged performance evaluation environments: (HIT, OPNET-Modeller)
- Mapping resource requests to machines: QUEST and the language Queueing SDL (QSDL)
- Coupling of SDL specification with simulation tool (Easy-Sim: Geode-SDL and SES Workbench)
- MSC-based performance evaluation and optimization (**DO-IT** Toolbox, HW/SW-Codesign Project)
- Building LQN performance models from traces (Model Builder)

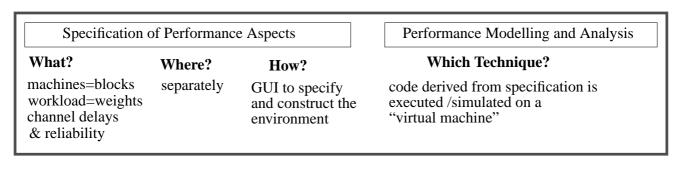
Classification of Approaches

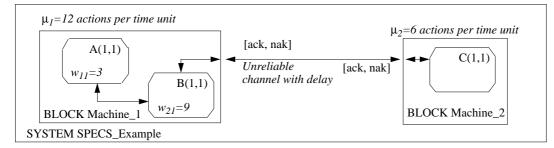
Specification of Performance Aspects		Performance Modelling and Analysis	
What? system stimuli resource demands (time durations) machine	Where? SDL MSC SDL/MSC	How? annotational (by comments) language extension	Which Technique? analytic queuing networks Petri nets (numeric or simulation) general simulation model code derived from specification
mapping perf. requirements	separately	implicitly	graph model (task/program graph) coupling with simulation tool

Performance Engineering of SDL/MSC Systems

Andreas Mitschele-Thiel

Bruno Müller-Clostermann


19 of 30


4. Tools: SDL-net - Mapping SDL to Stochastic Petri Nets

Specification	of Performan	ce Aspects	Performance Mod	elling and	Analysis
What?	Where?	How?	Which T	ſechnique	?
time durations (exponential)	separately	Petri net leve	el Petri nets & numer	ical Marko	ov analysis
SDL+ methodology & early impl. desig	k sn SD	L System	Interpretation (e.g. improvements)	SDL I	Results
		Transforma			Back Transformation
exponential rates f - transitions - channel delays		DL-net	Functional Analysis		ri net sults
- timer settings		Transform			Back Transformatio
		rkov Chain Model	Performance Analysis (e.g. response times, throughput)		ov Chain sults

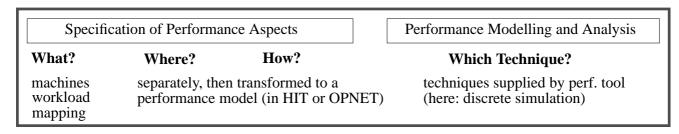
Literature: H. M. Kabutz, Doctoral Thesis, University of Cape Town, 1997

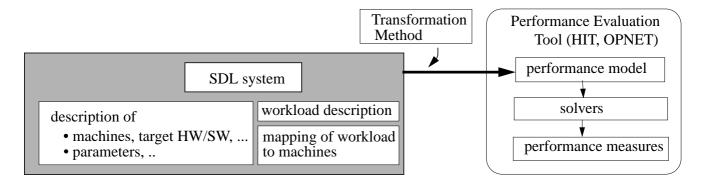
4. Tools: SPECS - SDL Performance Evaluation of Concurrent Systems

• Processes A and B in the same block execute in a multitasked way according to their weights w₁₁ and w₁₂

Literature: M. Bütow, M. Mestern, C. Schapiro, P.S. Kritzinger: Perf. Modelling with SDL, FORTE/PSTV '96

Performance Engineering of SDL/MSC Systems	Andreas Mitschele-Thiel	Bruno Müller-Clostermann	21 of 30

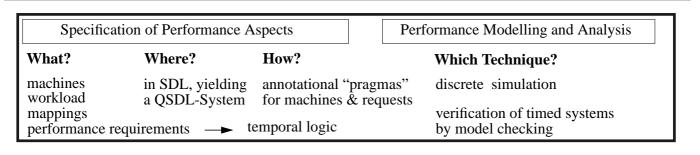

4. Tools: Hardware emulation with SPEET

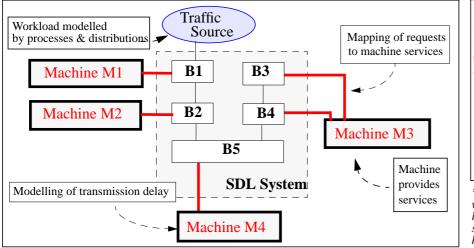

Specification of Performance Aspects		spects	Performance Modelling and Analysis
What?	Where?	How?	Which Technique?
transmission models workload generators	 separately 	simulation and emulation environment	 code derived from specification is executed on emulated hardware, parallel simulation
perf. requirements –	► MSC with t	ime constraints	

- Simulation and emulation of several formal specifications at the same time.
- Systems can be triggered by traffic load generators and can be interconnected with transmission links
- Detailed workload models and the exact modelling of (existing) hardware by emulation.

Literature: M. Steppler, M. Lott: SPEET - SDL Performance Evaluation Tool, Proc. SDL Forum '97

4. Tools: Usage of Modeling Environments (HIT and OPNET)

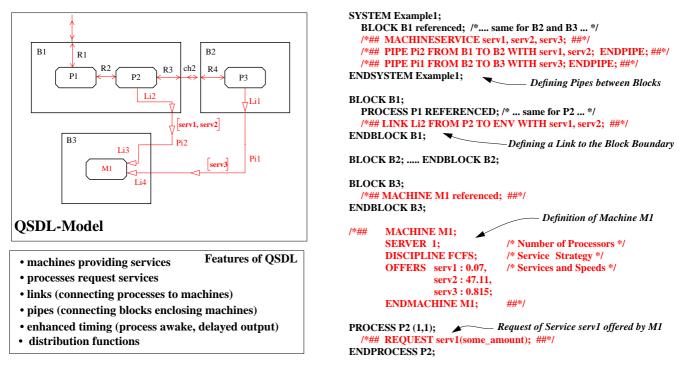

Literature: E. Heck: The Integration of SDL with HIT, Ph.D. Thesis, Universität Dortmund, Inf. IV, 1996 J. Martins, J.-P. Hubaux, T. Saydam, S. Znatny: Integrating OPNET and SDL, ICC 1996


```
Performance Engineering of SDL/MSC Systems
```

Andreas Mitschele-Thiel

23 of 30

4. Tools: QUEST and the Extension of SDL to QSDL



The extension to QSDL Extensions to describe time and resources are added as comments. QSDL consists of SDL with comments*). The tool QUEST QUEST translates QSDL-systems to performance models and excutes simulations or verifies performance requirements

*) Since Oct. 1998 QUEST works with annotations instead of a language extension. This allows simple exchange of QSDL-Models between QUEST and other SDL-tools.

Bruno Müller-Clostermann

4. Tools: QUEST and the Extension of SDL to QSDL (cont'd)

Literature:

M. Diefenbruch, et al.: The QUEST-approach for the Perf. Eval. of SDL-Systems, FORTE/PSTV '96

J. Hintelmann, et al.: Perf. Analysis of TCP's Flow Control Mechanisms using QSDL, SDL Forum '97

Performance Engineering of SDL/MSC Systems	Andreas Mitschele-Thiel	Bruno Müller-Clostermann	25 of 30

4. Tools: Coupling SDL with the SES Workbench

Specification of Performance Aspects		ance Aspects	Performance Modelling and Analysis
What?	Where?	How?	Which Technique?
refinement of - timer - channel - task component exch	separately	SES workbench	coupling of GEODE-SDL with the SES workbench (simulation environment)

- Functional aspects of the SDL description are modelled in the SDL environment
- Aspects related to time and non-ideal features of hardware are modelled by the SES workbench.
- SES workbench provides components to
 - ... generate timeouts after a specified time,
 - ... model communication links (delay and error) and
 - ... model processing delay incurred by SDL tasks and processes.
- The coupling is implemented by routing messages typically exchanged between the application-specific code and the SDL runtime support system through the SES workbench.

Literature: Chr. Schaffer, R.J. Raschhofer, A. Simm; EaSy-Sim: A Tool Environment for the Design of Complex, Real-Time Systems, EUROCAST'95

4. Tools: DO-IT / HW/SW-Codesign Project

Specification of Performance Aspects		ice Aspects	Performance Modelling and Analysis
What?	Where?	How?	Which Technique?
system stimuli service requests machine mapping perf. requirements	→ MSC → MSC → SDL → SDL s → MSC	annotational (comments in SDL and MSC)	 general simulation task and process graph analysis real-time analysis (schedulability)

- early and systematic integration of performance aspects in the systems engineering process
- automization of the design and implementation process employing model-based optimization techniques
- MSC-based performance evaluation techniques
- derivation of mixed HW/SW implementations (HW/SW codesign)

Literature: Mitschele-Thiel, et al.: DO-IT Toolbox, FORTE/PSTV '96

Henke, et al.: Derivation of Efficient Implementations from SDL Specifications, SDL Forum '97 Faltin, et al.: Annotational Extension of MSCs to Support Performance Engineering, SDL Forum'97 Mitschele-Thiel, Slomka: Methodology for HW/SW Codesign of RT-Systems, CONSYSE '97

Performance Engineering of SDL/MSC Systems	Andreas Mitschele-Thiel	Bruno Müller-Clostermann	27 of 30

4. Tools: Building LQN Performance Models from Traces

Specification of Performance Aspects		Performance Modelling and Analysis
What?	Where? How?	Which Technique?
processors & scheduling task allocation workload (arrival rates) resource demands (costs) perf. requirements (deadlines)	skeletal LQN model is completed to a performance model via a textual interface	response delays at any level are derived by analytic and simulative techniques

- Step 1: SDL excecution traces are transformed into angio traces
- Step 2: Identify the type of of messages in the trace (synch., asynch., reply, forwarding)
- Step 3: Identify the different services provided by each process
- Step 4: Find the precedence relationship between activities in each service
- Step 5: Map the software architecture model into an LQN submodel
- Merge the submodels, complete it to a performance model and solve with the LQN toolset

Literature: Automated Performance Modeling from Scenarios and SDL Designs of Distributed Systems, H. El-Sayed, D. Cameron, M. Woodside, PDSE '98

5. Concluding Remarks

A joint formal description serves as basis for several engineering activities, i.e. to deal with

- functional aspects and
- nonfunctional aspects

of the system under development.

Merits of SDL/MSC-Based Performance Engineering:

- validation of larger systems
- inherent consistency between the functional and the performance model
- automatic derivation of performance models from SDL or/and MSC specification
- small additional overhead for performance evaluation
- early detection of performance problems and potential performance bottlenecks
- major savings of time and money in later development phases and for later system releases
- no corruption of the systems architecture due to 'performance-hacking' (future-save development)

What's next?

- Case studies and application to real world problems
- Better integration with SDL methodology (including implementation design)
- Stabilization and distribution of tools, training of staff
- Improved cooperation with industry, tool builders, and standardization bodies

Performance Engineering of SDL/MSC Systems

Andreas Mitschele-Thiel

Bruno Müller-Clostermann

29 of 30

6. Further Readings

Systems Engineering with SDL:

- R. Brœk, Ø. Haugen. Engineering Real Time Systems, Prentice Hall, 1993. (Good book on the design and implementation of systems based on SDL)
- A. Olsen, O. Faergemand, B. Moeller-Pedersen, R. Reed, J.R.W. Smith. Systems Engineering Using SDL-92. North Holland, 1994. (Good reference book on SDL)

SDL/MSC-based Performance Evaluation and Performance Engineering:

- A. Mitschele-Thiel, B. Müller-Clostermann, R. Reed (Eds.). Proceedings of the Workshop on Performance and Time in SDL and MSC. Report IMMD VII-1/98, University of Erlangen, Germany, Febr. 1998. (Provides an up-to-date collection of papers on performance evaluation tools)
- A. Mitschele-Thiel, B. Müller-Clostermann. Performance Engineering of SDL/MSC Systems. To appear in Computer Networks and ISDN Systems, Elsevier, 1998. (Provides an overview on SDL- and MSC-based performance evaluation tools)
- A. Mitschele-Thiel. Performance Evaluation of SDL Systems. Proceedings of the 1st Workshop of the SDL Forum Society on SDL and MSC, Informatik-Bericht Nr. 104, Humboldt-Universität zu Berlin, June 1998. (Discussion of the issues involved with the integration of performance and time aspects into the SDL Z.100 standard)