
!"#"$%&'#()$"%*%+,")-$.($%/0)1$./)234

!"#$%&"'(&)*+,$-.'/%010"'2&3$4")
5)*6"6+60'7$,'89*60:';,$3,&::")3.'2+**"&)'/<&=0:9'$7'8<"0)<0*
>?'@AB$::+)"*6"<C0*#&9&.'($*<$D.'EFGFFH.'2+**"&
60%I'JKFG?L'GE>M?NEK'7&1I'JKFG?L'GE>ME?>H
0:&"%I'O)"<#.&,PQ"*R,&*A,+

5+0&$%6&
Several techniques for generating readable programs from SDL specifications are presented. These techniques
can be used to produce programs in a standard object-oriented programming language which preserve the
appearance of the source SDL specification. The main technique is to postpone most semantic transformations
until the run-time of the generated system. We show how the so-called start-up time of the generated program
can be used to restructure it from a readable form (which is used for inspections) into efficient run-time
structures (which are used to execute it within the corresponding run-time support system). We present some
details of the new approach and compare it with a few other code generators. We show that the application of
the new techniques does not imply any loss of efficiency of the generated programs as compared to more
conventional approaches.

7"89.$*0

234:)6.*")("#"$%&'.#:)$"%*%+,")-$.($%/0:)0"/%#&'6)&$%#01.$/%&'.#0

1. INTRODUCTION

In this paper we discuss the possibilities of generating readable programs from SDL. “Readability” is of course
a subjective notion. In order to position ourselves onto a more solid foundation we decided to define
;$"%*%+','&8<'&*'R,0*0,-")3'6C0'&RR0&,&)<0'$7'6C0'$,"3")&%'8ST'*R0<"7"<&6"$)'")'6C0'30)0,&60='R,$3,&:.

According to this definition the most readable document is the SDL specification itself. We treat both the
original SDL specification and the generated program strictly as texts. Under SDL specification we would
always understand “SDL/PR”. There are two reasons for restricting ourselves to text. First, we only consider
code generation into traditional imperative languages, which do not have a standard graphical representation
(such as SDL/GR). Second, the questions of readability when applied to graphical representations are much
more complex, and our attempt to define “readability” as structural equivalence will be less advantageous.
According to our definition of readability, generated program which on average uses e.g. 3 lines of code per
SDL line, will be more readable than the program which uses e.g. 4 lines of target code per SDL line. Another
aspect of our definition of readability is the fragmentation of the generated program. For example, a generated
program with 10 consecutive lines of target code for some SDL construct will be more readable than a program
with total of only 8 lines for the same SDL construct which are generated as two consecutive fragments. In the
above example the loss of readability is due to the distortion of the structure of the original SDL specification.

For designers familiar only with SDL and not with the target language our definition of readability will
probably be as good as any subjective one. Designer can easily inspect such generated program simply because
he can use SDL knowledge to understand it.

This paper is dealing with the following research question: Is it possible to generate a program in some
standard imperative (procedural or object-oriented) language while preserving almost one-to-one (even optical)
correspondence with the original SDL specification? In other words, what are the limits of molding the
appearance of generated programs and what techniques are available for that purpose? These questions are part
of a more complex research problem: What are the properties of semantic-preserving mappings between two
formal languages (source and target language) and how these properties can be used to design a transformation
system (e.g. a code generator) to produce target language programs with given qualities (e.g. readable, modular,
efficient, etc.). We believe that it is important to investigate this area because automatic code generation is one

of the attractions of using formal description techniques, such as SDL [1]. As we mentioned in our earlier paper
[3], several code generators from SDL are available [6], however their wide acceptance in software industry is
yet to come [4]. Lack of the readability of the generated programs might be one of the reasons, which still
hinders the use of automatic code generators.

We revisited various mapping decisions in existing code generators from SDL to imperative programming
languages. The main result of our research is that it is possible to significantly increase the readability of the
generated programs. However the new approach requires new code generation techniques. The main technique
is to postpone most semantic transformations until the run-time of the generated system. We suggest to use the
so-called start-up time of the generated system to restructure it from a form that is used for inspections into
efficient internal run-time structures which are used during the execution of the system within the
corresponding run-time support system.

Restructuring “inspectable” representations of the generated program into “executable” representations is
the key of the new approach. On the other hand, significant language support is required in order to preserve
most of the appearance of the original SDL specification in the generated program. We used C++ as the target
language for our readable mapping. Important technique is to use macrodefinitions in order to “camouflage”
certain details of the generated program and thus mold its appearance.

We have developed prototype code generator from SDL to C++ in which suggested techniques were used.
Development was based on our previous SDL translator [2]. The prototype implements mapping decisions for
most of SDL-92 constructs. The readable mapping presented in this paper heavily uses most of C++ features:
classes and objects are used to represent SDL scope units; nested class definitions are used to represent nesting
of SDL scope units; most SDL operations are represented as C++ methods; SDL inheritance and virtual
redefinition are represented as C++ inheritance and virtual methods redefinition; structural types with formal
context parameters are in most cases represented as C++ classes with templates.

The rest of the paper has the following structure. In section 2 we present a sample output from our code
generator. This example demonstrates that indeed the generated program can preserve an almost optical
correspondence with the original SDL specification. In section 3 we discuss the most important techniques of
our approach – the use of start-up time of the generated system and the use of macrodefinitions in the generated
program. Section 4 demonstrates internal details of the mapping. In section 5 we describe results of comparison
between several code generators. Section 6 concludes the paper.

2. SAMPLE GENERATED PROGRAM

Figure 1 demonstrates an example of our readable mapping from SDL to C++.

SDL C++
PROCESS Ping;
TIMER Tmr;
DCL
 Count INTEGER;

START;
 TASK Count := 0;
 Lab :
 OUTPUT Ping;
 SET(NOW + 10, Tmr);
 NEXTSTATE Wait;

STATE Wait;
 INPUT Pong;
 RESET(Tmr);
 TASK Count := Count + 1;

PROCESS_DECL(PING);
 TIMER_DECL0(TMR);
 DCL(COUNT,int);
 STATE_LIST(
 STATE_DECL(WAIT));
ENDPROCESS_DECL(PING);

PROCESS_DEF(PING)
 TIMER_DEF(TMR);
 START;
 TASK COUNT=0;
 LAB:
 OUTPUT(PING());
 SET(NOW+10,TMR());
 NEXTSTATE(WAIT);
 ENDSTART;
 STATE(WAIT);
 INPUT(PONG,);
 RESET(TMR());
 TASK COUNT = COUNT +1;

 DECISION Count = 100000;
 (true) :
 OUTPUT Finish;
 STOP;
 else :
 JOIN Lab;
 ENDDECISION;

 INPUT Tmr;
 STOP;
ENDSTATE;
ENDPROCESS Ping;

 DECISION(COUNT==100000);
 CASE(IS_EQUAL(COUNT==100000,
 TRUE));
 OUTPUT(FINISH());
 STOP;
 ELSE
 JOIN(LAB);
 ENDDECISION;
 INPUT(TMR,);
 STOP;
 ENDSTATE;
ENDPROCESS_DEF(PING);

='(>$")?@)234)-$.6"00)$"-$"0"#&%&'.#)'#)ABB

3. TECHNIQUES FOR GENERATING READABLE PROGRAMS

In this section we suggest techniques which can be used to control the appearance of the generated programs
and can thus be used to generate quite readable code.

Let’s introduce some terminology for discussing &RR0&,&)<0 of generated programs and source
specifications. We assume an abstract syntax view of a program as being built from <$)*6,+<6*. Pure abstract
syntax view of a program considers only semantics of each construct. In our approach some syntactical
considerations are also required. Generated program consists of two groups of constructs: =$:&")'<$)*6,+<6*
and 3%+0' <$)*6,+<6*. 3./%'#) 6.#0&$>6&0 correspond to the definitions and “operations” (i.e. any usage of a
definition) in the original SDL specification. !,>") 6.#0&$>6&0 are additional operations (and sometime even
definitions) which coordinate the work of domain constructs both semantically and syntactically. Glue
constructs are mostly used to bridge the syntax and semantic gap between the source and target languages. Both
domain constructs and glue constructs affect the appearance of the generated program. We believe that it is the
glue constructs that can make generated programs difficult to inspect.

Informally, the strategy of generating readable code should aim at representing source constructs with as
few domain constructs as possible while also keeping the amount of glue constructs to minimum. Usually, there
exist several alternatives for mapping each source construct into domain constructs, but not all of the resulting
combinations result in correct programs. The amount of domain constructs per each source construct is roughly
determined by the semantic gap between the source and target languages.

The usual techniques for bridging this gap is to use run-time support system which encapsulates some (or
even most) of the domain constructs [5]. Run-time support system is especially useful for mapping data of the
source language. However the use of the run-time support libraries alone does not lead to a one-to-one
correspondence between the source program and the target program because of the differences in control
structures of the two languages.

We believe that limiting our design space to available =",0<6 mappings as shown above is too restrictive for
our purposes. Instead we suggest to use ")=",0<6 mappings. In an indirect mapping domain constructs are used
as instructions to build semantically equivalent representation of a source construct rather than as such
representation itself. Indirect mappings imply that the execution of the generated system starts with an
additional phase at which run-time structures are built and initialized. We suggest to use the name *6&,6M+R'6":0
$7' 6C0' 30)0,&60=' *9*60: for this phase. Essentially, the start-up phase of the generated system is used to
restructure it from one 7$,: (instructions to build run-time structures) into another 7$,:'(the run-time structures
themselves). Indirect mappings dramatically increase design space of available mappings and allow
considerable flexibility in the appearance of the generated program because they are not any more restricted to
preserving semantic equivalence using domain constructs.

SDL mappings are affected by another fundamental problem. Extensions of the language in SDL have no
explicit semantics. Instead, the standard [1] suggests transformations of SDL extensions to basic SDL. Most of
SDL translators perform specified transformations before generating code. This means that the source
constructs which are the input to the code generator are not the same as the source constructs in the original
SDL specification, and the structural equivalence is lost even before the code generator is started.
Transformations affect readability since they cause considerable duplication (as well as fragmentation) of code.

We suggest that &)9 readable mapping should -.0&-.#" most of SDL transformations to a later stage and
use the original SDL specification as its input. We suggest that these transformations should be done at the
start-up time of the generated program.
To summarize, start-up time is used for the following purposes.

• Some actions that are usually performed in SDL analyzer and code generator can be done at start-up
time. For example, all numbering of generated entities (e.g. *"3)&%*, U%$<#*, R,$<0**0*) can be done
dynamically so that program text looks less like object code and is more appropriate for human
inspection.

• The use of start-up initialization can considerably decrease the size of the generated program. Size of
the generated program is proportional to a number of generated classes and class methods. Start-up
time allows to perform instantiation of object of universal classes defined in run-time support system
instead of generating specific classes for each SDL object. C++ methods with varying number and
types of parameters are used for this purpose.

• More efficient run-time structures of the executing system can be build at start-up time than during
code generation. The delay of creating efficient run-time structure:
- keeps generated program readable (since effective things look more like object code);
- allows to form extremely effective execution-oriented system representation at start-up (e.g.

routing tables, graph tables).
• Run-time configuration of executing system is also established at start-up time. The same generated

program potentially can work in different configurations. E.g. mapping of SDL blocks and processes to
operating system tasks does not impact on the representation of generated program. The concrete
physical configuration of the system is expressed by specific makefile.

• Some standard SDL transformations can be effectively performed at start-up time instead of doing that
in SDL analyzer (e.g. multiplication of &*60,"*#' *6&60*, ")R+6*, *&-0*, transformation of <$)6")+$+*
"3)&%). Such late transformations allow
- to preserve SDL system structure in generated program;
- to minimize duplication of code in generated program;
- to implement effective support algorithms for most SDL shortcuts.

4. DETAILS OF THE MAPPING

This section describes the internals of our mapping for selected SDL constructs. First part describes the
mapping of SDL graph. Second part outlines mapping for SDL syntype.

C@?)D%--'#()1.$)234)($%-E

 Descriptions of graphs constitute the major part of an SDL specification. We believe that descriptions of graphs
in the generated program are the most likely candidates for human inspections. This is why readable mapping
for SDL graphs is very important.

@&*"<'8ST'3,&RC
SDL graphs for process, service and procedure are mapped to separate C++ classes inheriting appropriate base
classes from support system. Generated class has the following properties.

• General functionality of SDL graph (e.g.)016*6&60, *6$R, $+6R+6, *06, ,0*06) is encapsulated in public
methods of base classes.

• Definitions inside graph (e.g. *$,6*, *"3)&%*, 6":0,*) are represented as nested C++ class definitions.
• SDL variable definitions correspond to public class data members with appropriate sorts.
• Graph variables are mostly used in graph body (one of graph methods) but can be used from outside the

graph class (e.g. from graph derivative, child procedure, with -"0D from another graph).
• Graph body is encapsulated in a single method – constructor of class. All states and all graph transitions are

joined together.

Let’s consider the structure of the graph in more details. Basically there are two approaches to representation of
FSM in procedural programming language.

• Two nested switch statements (first factored by *6&60, second - by *6":+%") containing transitions on
branches of the nested switch. It is easy to implement an FSM in this way but there are few disadvantages:
access to transition is not always direct and effective (sometimes switch-statement is translated to sequence
of nested if statements); transition can not be redefined dynamically.

• Table-driven approach is based on two-dimensional array indexed by state and stimuli. Cells of the table
contain references to transition bodies. This approach is very efficient and flexible.

Table-driven mapping of SDL graph is suitable for our purposes because it supports our technique of
restructuring the system at start-up time because FSM tables can be constructed dynamically.

Figure 2 demonstrates the fragment of generated program for an SDL graph before and after C++
preprocessing.

SDL C++ Preprocessed C++
STATE st1;
 SAVE sig2;
 INPUT
sig1(i,c);
 …

 PROVIDED
 p = sender
 …
ENDSTATE;

STATE(ST1);
 SAVE(SIG2);
 INPUT(SIG1,
 PAR1(I),
 PAR2(C));
 …

INPUT_CONTINUOUS
 (P == SENDER);
 …
ENDSTATE;

V+,,0)686&60W*6&8XE'W'X,&)*"6"$)X&U%0MY203"*60,86&60JZ8XEZL[O
5)"68&-05)X,&)*"6"$)X&U%0JV+,,0)686&60.*"385\>II5=L'[
V+,,0)68"3)&%W*"385\EII5=[
"7J*06]:RJX:R^+:R/==,L'WW'FL
''5)"6X,&)*"6"$)X&U%0J'X:R^+:R/==,.'V+,,0)686&60.'V+,,0)68"3)&%L[
else {
 (SDLGraph*)this=CurrentGraph;
 sigSIG1* Stimuli=CurrentSignal;
 I = Stimuli->Par1;
 C = Stimuli->Par2;
 SDLScheduler::SetSenderAndDeleteSignal();
 …
 }
V+,,0)68"3)&%W*"3V$)6")+$+*II5=[
"7J*06]:RJX:R^+:R/==,L'WW'FL
''5)"6X,&)*"6"$)X&U%0J'X:R^+:R/==,.'V+,,0)686&60.'V+,,0)68"3)&%L[
else {
 (SDLGraph*)this=CurrentGraph;
 if (P == (*(CurrentGraph->Instance()->Sender())) {
 sigContinuous* Stimuli=CurrentSignal;
 SDLScheduler::SetSenderAndDeleteSignal();
 }
 else
 longjmp(EnablingConditionFail,1);
 …
 }

='(>$")F@)D%--'#()1.$)234)($%-E

Constructor of the C++ class representing SDL graph can be logically divided into two parts.
1) Start-up code (typed in "6&%"<'font). During the start-up time of the generated system the graph is created and
its constructor is called. Start-up part of constructor is traversed and addresses of all transitions in all states are
stored in the corresponding transition table. Standard C technique of non-local control passing (functions *06]:R
and %$)3]:R) is used to store transition address. SDL state identifiers and signal identifiers are enumerated
dynamically. Special value of transition address is used to specify *&-0 reaction on SDL signal. Special signal
identifier is used to store reaction on continuous signal.
2) Run-time code is executed when graph transitions are performed. At the beginning of transition the following
actions are performed.

• Value of graph class variable 6C"* is restored. It should be done because execution program stack can be
crashed after non-local control passing. Values of graph variables are stored outside the stack (in heap) and
don’t need to be updated. Unfortunately not all C++ compilers support assignment to variable 6C"*A'In our

prototype we decided to use the extension available in GNU C++ compiler, however portable techniques of
restoring stack are available as well [7].

• If enabling condition for transition is available, it is calculated. If 7&%*0 then control is passed back to graph
dispatcher.

• Graph variables are initialized by signal parameters.
• Special actions are performed: value of *0)=0, is reset; signal object is deleted.

Each SDL transition has a terminator (e.g.)016*6&60.' *6$R.']$").' ,06+,)). Terminators use non-local control
passing to call system scheduler (part of the run-time support system) to start a new transition. Non-preemptive
event-driven scheduling scheme is used.

8$:0'8ST'3,&RC'0160)*"$)*
Our mapping directly supports most of SDL-92 extensions (shortcuts). Below we consider mapping details for
some of SDL graph extensions.

/*60,"*#' *6&60, ")R+6* and *&-0* are easily integrated into table-oriented FSM implementation. Usually
duplication of graph transitions occurs when &*60,"*# constructs are transformed. We perform the same
transformations at start-up time. We only duplicate transition addresses across the cells of graph tables. All
these addresses refer to a single) piece of code corresponding to &*60,"*# transition. Figure 3 demonstrates
internals of graph code for &*60,"*#*. For all &*60,"*#* appropriate registration methods are called at start-up
time. Real duplication of transitions is performed at the last moment of graph initialization after all normal
transitions were registrated.

Our approach to representation of FSM allows direct mapping of SDL graph inheritance hierarchy (which
can take place for process and service types) to C++ class hierarchy. In general there are the same concepts of
inheritance in SDL and C++. Derived type has the same functionality as base type but adds something new.
C++ class for derived graph inherits class for base graph. Derived class inherits all definitions of base graph:
variables, gates, sorts, other nested definitions,states and transitions. Derived graph inherits base transition table
and extends it with own transitions and states. C++ constructor of the base graph is executed before constructors
for derived graphs. As in case of asterisks there is no duplication of code: derived class contains only
definitions from appropriate derived SDL type. Both languages allow to redefine some constructs from the base
type in the derived class. Actually, C++ provides a more powerful mechanism for redefinition: the choice of
method to be called can be done dynamically (for virtual methods). While in SDL all solutions are done
statically. Virtual redefinition of *6&,6, ")R+6 and *&-0 is easily represented as reinitializing of appropriate cell in
transition table of derived graph. Old transition reference becomes useless and is rewritten with address of other
transition. Here we use the flexibility of start-up system customization.

SDL C++ Preprocessed C++
STATE *;
 SAVE *;
 …
ENDSTATE;

ASTERISK_STATE;
 ASTERISK_SAVE;
 …
ENDASTERISK_STATE;

V+,,0)686&60WX,&)*"6"$)X&U%0MY203"*60,/*60,"*#86&60JL[
O
''5)"6/*60,"*#8&-05)X,&)*"6"$)X&U%0JV+,,0)686&60L[
''_
}

STATE *;
 INPUT *;
 …
ENDSTATE;

ASTERISK_STATE;
 ASTERISK_INPUT;
 …
ENDASTERISK_STATE;

V+,,0)686&60WX,&)*"6"$)X&U%0MY203"*60,/*60,"*#86&60JL[O
"7J*06]:RJX:R^+:R/==,L'WW'FL
''5)"6/*60,"*#5)R+5)X,&)*"6"$)X&U%0J'X:R^+:R/==,'.V+,,0)686&60L[
else {
 (SDLGraph*)this=CurrentGraph;
 SDLScheduler::SetSenderAndDeleteSignal();
 …
 }
}

='(>$")G@)D%--'#()1.$)%0&"$'0H0

C@F!D%--'#()1.$)234)!"#$"%&!

Most of SDL sorts are mapped to separate C++ classes. We consider example of SDL *9)69R0 mapping in
order to illustrate ideas of run-time system initialization. Generated C++ class for *9)69R0 !&6+,&%' is
demonstrated at Figure 4. Class *$!/X`2/T has own constructor and operators but it doesn’t have any data
members: data is stored in base class *$5!Xa\a2A Constraints of *9)69R0 are stored in special container object
!/X`2/TV$)*6,&")6* of parameterized <%&**' 89)69R0V$)*6,&")6*' b<%&**' 89)69R0.' <%&**' @&*0V%&**Y. To
perform range condition check method *$!/X`2/TII<C0<#JL is called which in turn calls method <C0<# of
object-container. The class for container of constraints is defined in the run-time support system. Each *9)69R0
has a single container object. This object is instantiated at start-up time using the universal constructor of its
class.

SDL C++ Preprocessed C++
SYNTYPE
Natural =
 Integer
 CONSTANTS
>= 0
ENDSYNTYPE;

SYNTYPE_DECL(Natural,/*=*/Integer);

SYNTYPE_DEF(Natural,/*=*/Integer)
CONSTANT(
 GREATER_OR_EQ(Integer,0))
END_SYNTYPE_DEF(Natural);

class soNATURAL: public soINTEGER {
 SoNATURAL();
 SoNATURAL(soINTEGER&);
 soNATURAL& operator=(soINTEGER&);
 void check();};
SyntypeConstraints<soNATURAL,soINTEGER>*
 NATURAL_Constraints;
89)69R0V$)*6,&")6*b*$!/X`2/T.*$5!Xa\a2Yc
!/X`2/TV$)*6,&")6*'W')0D'89)69R0V$)*6,&")6*
b*$!/X`2/T.*$5!Xa\a2Y
J<#\,0&6d,ae+&%.F.<#!$6C")3($,0L[
void soNATURAL::check()
 {NATURAL_Constraints->check();}

='(>$")C@)D%--'#()1.$)234)08#&8-")'($)*(+

Constructor of container object for *9)69R0 constraints uses varying length parameter list
(89)69R0V$)*6,&")6*J_L). The following agreement is used to parse parameters.

• Each range condition starts with a tag (e.g. <#\,0&60,d,ae+&%) which specifies kind of constraint.
• The tag is followed by one or two boundary values.
• List of constraints is terminated with special value <#!$6C")3($,0.

Constructor of constraints creates the internal list of constraints. This list is later used in method <C0<#.
The mapping of *9)69R0* illustrates the idea of restructuring the system at start-up time. Instead of explicitly

generated 6.*" that performs check of constraints we use *%&% values for representing constraints that are
passed to constraint constructor. The initialization of *9)69R0* is performed only once at start-up time.

5. COMPARISON

In this section we introduce some metrics to analyze static characteristics of generated programs, in particular
those which formalize our definition of readability. We use metrics to compare our code generator with several
other generators. At the end of the section we will also consider some overall performance characteristics of the
generated programs.

I@?)J"%*%+','&8)/"&$'60

1. Coefficient a'W'f gf (expansion),
where f is volume of generated program, f is volume of source fragment. Volume is measured in
non-empty lines of code (LOC). The coefficient estimates compactness of the mapping. Compact target
program requires less time for inspection. According to our informal definition of readability, the goal is to
reduce a.

2. Coefficient 8'W'2 g2 (structure transformation),

where 2 is a quantity of objects and relations in generated program that differ from any object or
relation in source specification plus quantity of SDL objects and relations that are omitted in generated
program, 2 is a total number of objects and relations in source fragment. 8 is a coefficient of
transformation of source structure. According to our definition of readability, 8 should be close to zero.

3. Coefficient hW Eg)'∑ ' h (fragmentation)
Where h is a fragmentation of given (one of)) source SDL construct. It represents the number of
consequent fragments in generated program to which the given SDL construct is mapped. According to our
definition of readability, coefficient h should be as close to 1 as possible. This coefficient provides some
measure of structural distortion, introduced by a given mapping. The structure of the original SDL
specification can be distorted in two ways: 1) some source construct is split into two or more non-
consecutive domain constructs; 2) domain constructs are duplicated for some source construct. Both
situations decrease readability according to our definition. However we believe that the second distortion is
more serious. Value h = 1 is interpreted as structural equivalence of two systems. According to our
definition of readability, structural equivalence is the key issue, however complete preservation of
appearance of the original SDL specification in the generated program involves the balance of all metrics.

4. Coefficient `'W ` g` (usage of names),
frequency of source name usage in generated program (`) in comparison to frequency of this name’s
usage in the original specification (`). The ` metric is somewhere similar to h but its growth does not
mean duplication of source code. It rather means frequency of SDL object referencing in target
representation. The best result is `=1 when the source name is mentioned exactly in the same way in
source and target representations.

5. Coefficient ;'W'; g; (preserving of names),
where ;$,"3 is a quantity of source names that are represented unchanged in the target code, ;*,< is a total
number of names in source fragment. Keeping source names unchanged in the generated program
simplifies code inspections. According to our definition of readability, value ;=1 is the best result.

I@F)K"$1.$/%#6")/"&$'60

To compare performance characteristics of target systems from different generators and run-time support
systems we use traditional metric X . X is a time value necessary for executing of benchmark test. Time is
measured with use of Quantify [8] profiling tool that allows to get run-time performance of the software with
great precision.

I@G)J"0>,&).1)/"%0>$"/"#&0

We use well known SDL example Ping-Pong to compare our approach to other available SDL code generators.
Our C++ programs are compared with

• application C code generated by SDT code generator [9];
• C code produced by ObjectGEODE code generator [10];
• C++ code generated by RASTA translator [2].

Total (LOC) E overall E for structural
Components

E for
communication
Components

E for SDL graph

SDL 67 - - - -
WE 221 3.3 7.6 1.3 2
SDT 649 9.7 18.6 5.2 7.8
ObjectGeode 815 12.2 17.6 1 12.6
RASTA 441 6.6 8.3 2.3 7.1

L%+,")?@)MN-%#0'.#)6."11'6'"#&)M)1.$)K'#(OK.#(

Table 1 compares volume of SDL specification for Ping-Pong with volumes of automatically generated
programs. We compare coefficient a for several groups of SDL constructs: structural components (*9*60:,
U%$<#, other infrastructure), communication components (<C&))0%*, *"3)&%,$+60*, *"3)&%*, *"3)&%%"*6*), SDL
graph body (internals of R,$<0**, *0,-"<0, R,$<0=+,0). Our mapping is especially advantageous for SDL graph
body that takes the most part of specification.

Column P in Table 2 shows how original SDL specification names and original specification structure are
kept in generated program. Usually code generators use prefixes and suffixes to make names globally unique.
We pay special care to keeping source names in generated programs. Prefixing of SDL names is done inside
macrodefinitions so that their original appearance is preserved.

 The coefficient 8 illustrates how much the structure of generated program differs from source. Value of 8 is
affected by two factors: 1) transformation of source SDL structure (standard SDL transformations, bringing of
SDL specification into executable form) and 2) introduction of non-SDL-related services directly into generated
program (e.g. trace information, mapping of system into target OS tasks).

For structural
constructs

For communication
constructs

For SDL graphS

F U F U F U

P

WE 0.1 5.6 5.4 5.2 1.2 1.2 1.2 1
SDT 0.4 7.6 19.3 6 4.7 2.1 5.0 0.6
ObjectGeode 0.5 4.3 12 1.7 0.5 1.5 2.6 0.5
RASTA 0.5 7.3 7.8 2.3 0.4 1.5 1.5 0.6

L%+,")F@)A."11'6'"#&0)2:)=:)P)%#*)K

Coefficients h and ` show how single SDL construct is distributed over generated program. It is obvious
that structural components are fragmented more than graph components that are usually localized in single
function (method).

Generator Tpingpong Ttypebasedpingpong
WE 0.59 1.02
SDT 0.75 1.53

RASTA 1.62 -

L%+,")G@)MN"6>&'.#)&'/").#)K'#(OK.#()&"0&

Table 3 reflects performance speed of generated code on benchmark tests. The measurement was done on SUN
ULTRASPARC-1 (147MHz) platform. Values in the second column corresponds to Ping-Pong specification
with 100 000 repeats. Value in the third column corresponds to the typebased version of Ping-Pong which uses
")C0,"6&)<0, -",6+&%'")R+6* and additional <$)6")+$+*'*"3)&%*. Readable C++ programs generated using the new
techniques does not show any decrease in performance as compared to programs produced by industrial-
strength commercial code generators. We attribute good performance of our generated programs to the
following factors:
- start-up time allows to build efficient routing structure for sending signals;
- non-local control passing allows very efficient context switching between SDL process instances and graph

dispatching;
- direct support for some SDL shortcuts (e.g. <$)6")+$+*' *"3)&%) is more efficient than the corresponding

transformation in the analyzer;
- customized memory allocation functions reduce overhead for object creation and deletion.

6. CONCLUSIONS

In this paper we investigated some possibilities of generating readable programs from SDL specifications.
Readability was defined as preserving the appearance of the original SDL specification in the generated
program. Several metrics were suggested for a more formal definition of readability. We have developed a
prototype code generator which implements new techniques suitable for producing very readable generated

programs. Our code generator uses C++ as the target language and is based on our previous SDL translator
RASTA [2].

New techniques were investigated for the purposes of our project. The main technique is to postpone most
semantic transformations until the run-time of the generated system. We show how the so-called start-up time
of the generated program can be used to restructure it from a readable form (which is used for inspections) into
efficient run-time structures (which are used to execute it within the corresponding run-time support system).
Another important technique is to use macrodefinitions in order to “camouflage” certain details of the generated
code (the so-called glue constructs).

Comparisons to several other SDL code generators according to suggested metrics show that our approach
produces more readable code. It is interesting to note, that the application of the new techniques does not imply
any loss of efficiency of the generated programs as compared to more conventional approaches.

6. REFERENCES

[1] Z.100 (1993), CCITT Specification and Description Language (SDL), ITU-T, June 1994.
[2] N. Mansurov: A. Kalinov; A. Ragozin; A. Chernov: “Design Issues of RASTA SDL-92 Translator”, in

R. Braek, A. Sarma (Eds.) SDL'95 with MSC in CASE, Proc. of the 7-th SDL Forum, Oslo, Norway,
6-29 September, 1995, Elsevier Science Publishers B. V. (North-Holland), pp. 165-174.

[3] N. Mansurov; A. Ragozin; A. Chernov; I. Mansurov: “Industrial strength code generation from SDL”,
in A. Cavalli, A. Sarma (Eds.) SDL’97: TIME FOR TESTING – SDL, MSC and Trends, Proc. Of the
8-th SDL Forum, Evry, France, 23-26 September, 1997, , Elsevier Science Publishers B. V. (North-
Holland), pp. 415—430.

[4] A. Mitschele-Thiel; P. Langendorfer; R. Henke: “Design and optimization of High-Performance
Protocols with the DO-IT Toolbox”, in FDT IX: Theory, application and tools (eds. R. Gotzhein, J.
Bredeke), Proc. of the FORTE/PSTV’96 symposium, Germany, Kaiserslautern, 8-11 October 1996,
Chapman & Hall, pp. 45-60.

[5] R. Braek; O. Haugen:”Engeneering Real-Time Systems”, Prentice Hall BCS Practitioner Series 1993.
[6] Demonstrations, in SDL'95 with MSC in CASE (eds. R. Braek, A. Sarma), Proc. of the 7-th

SDLForum, Oslo, Norway, 26-29 September, 1995, Elsevier Science Publishers B. V. (North-
Holland), pp. 373-388.

[7] K Ahrens; J. Fischer; D.Witaszek: ”A process library for simulation in C++”, available at ftp:
76RIgg76RA")7$,:&6"#AC+MU0,%")A=0gR+Ug%$<&%g*":+%&)6g$=0:/.

[8] Quantify 2.0, Pure Software Inc. 1309 South Mary Avenue Sunnyvale, CA 94087, U.S.A.
[9] “Telelogic Tau 3.2 Reference Manual”: Telelogic AB, P.O. Box 4128, S-203 12 MALMO, Sweden.
[10] VERILOG: “ObjectGEODE Toolset Documentation”, 1996.

ACKNOWLEDGES

We would like to thank Tord Andreasson, Jan Karlsson from Telelogic AB (Sweden) for discussing various
aspects of industrial-strength code generation and for providing feedback on this research.

