
The ETSI SDL model for the Intelligent Network
Application Protocol

Dieter Hogrefe Jan Ellsberger
ETSI TC MTS chairman ETSI PEX competence center, France
Institut fuer Telematik, Germany jan.ellsberger@etsi.fr
hogrefe@itm.mu-luebeck.de

Abstract
This paper describes the development of the ETSI INAP SDL model, one of the first complete and strictly formal
SDL specifications making use of full object orientation. The model is used as an integral part of the ETSI and ITU-
T standards for intelligent network and is used within ETSI to produce the corresponding test suite in a semi-
automatic way.

Keywords

Intelligent network, INAP, SDL, MSC, TTCN, test case generation, object orientation

1 INTRODUCTION

With a complete SDL model for the Intelligent Network Application Protocol ETSI is exploring new grounds.
Traditionally the specifications published by ETSI make use of SDL [1] only in an informal and illustrative way.
This has advantages, e.g. understandability and development time, but also disadvantages, e.g. the specifications are
not machine processable.

The SDL work was done in the ESTI Sub-Technical Committee SPS3 on a voluntary basis with support of the
Permanent Expert Group (PEX) at ETSI and the Technical Committee Methods for Testing and Specification (TC
MTS). The SDL was developed in parallel with the INAP protocol standardization with only a little delay. The work
started in the middle of 1995 and the SDL model was finished in the middle of 1997 at the same time with the
publication of the INAP protocol CS2. See [3] for CS1 and [4] for CS2.

Unlike other SDL models for INAP, the ETSI model has been done in very close cooperation with the
standardization process and is now published together with the standard as a normative annex A of [4].

The purpose of the complete SDL model for INAP is the facilitation of

- service development
- feature interaction studies
- switch design
- test case generation

In the past, in particular the development of test suites based on a protocol or service specification proved to be
difficult. The reasons are diverse. One reason is that the test suite in many cases comes very late, a too long time
after the respective protocol or service specification. Therefore it is only of limited value for the industry which
makes products based on a particular specification. The products are already on the market before the test suite is
readily published. The other reason is cost. Because of the risc that the value is limited in many cases, the motivation
of the companies to participate in the development of a test suite voluntarily is sometimes low. This means that ETSI
has to set up project teams in the costed work program in order to develop the test suite.

The development of a complete SDL model as the normative part of the protocol or service specification is an
attempt to tackle these problems.

2 ARCHITECTURE OF THE MODEL

The INAP CS1 and CS2 models are specified with SDL 96 [5] in an object oriented way. The CS2 specification
inherits the CS1 and only specifies the difference between CS1 and CS2. Consequently the architectures of CS1 and
CS2 are more or less the same.

The SDL model specifies precisely and unambiguously the behaviour and the interworking between the different
functional entities: CS, CSA, SSF-FSM, BCSM. The data structures are not completely specified. They are included
in [4] and appropriate references are made in the SDL model.

The model issues a plattform for service emulation and the development of test cases based on IN services.

Fig. 1 shows the INAP CS1/CS2 information model. There are one or many Call Segments in one Call Segment
Association. There is a one to one correspondence between Call Segment and Connection Point, and so on. There
are two objects of type BCSM, the OriginatingBCSM and the TerminatingBCSM.

Call Segment Association

Call Segment

Connection Point Leg

Passive Leg Controlling Leg

Terminating BCSM Originating BCSM

BCSM

State Model

1,m

1

1

1 0,m

1

1

1

0,1

1 1

0,1 0,1

1 1

0,1

F
ig.1 IN CS1/CS2 information model

Fig. 2 shows the SDL model of CS1 SSF/CCF. The CS2 equivalent is shown in Fig. 5 from where it can be seen that
the overall structure is the same for both capability sets. CS2 inherits most of the items of the CS1 model and refines
them. The objects in the information model of Fig. 1 map to the SDL model of Fig. 2 in the following way.

The Call Segment Association object is a process type in the SDL model. The CallSegmentAssociation manages the
- the creation of CallSegments and
- the dialogue with the SCF.

The Call Segment object is divided into two process types in the SDL model: CallSegment and SSF-FSM. The
process type CallSegment manages the
- identifiers of the legs (connection view). This data structure models the Connection Point object.
- creation of the O-BCSMs and T-BCSMs.
- creation of the SSF-FSM.

- filtering of detection points
- processing of connection view oriented IN operations

The process type SSF-FSM manages the
- processing of IN operations
- handling of detection points (EDPs and TDPs).

The Connection Point object is modeled by a data structure as described above.

The Leg object is also a data structure within the process type CallSegment. It is identical to the data structures of
Passive Leg and Controlling Leg. The data structure contains the status of the leg and a pointer to the BCSM
connected to the leg.

Terminating BCSM and Originating BCSM are both objects of the class BCSM in the information model. The SDL
model is not exactly constructed this way. Since the O-BCSM and T-BCSM significantly differ, they are modelled in
two completely independent process types.

The SDL model of SSF/CCF containes one additional process type: InterfaceHandler. The InterfaceHandler is the
permanent manager of the call control function. When the interpretation of the SDL specification begins, the IH is
the only process that exists. Then during the course of a call setup the IH, after having received the appropriated
messages from the environment, creates the call segment association. It also handles the dialogue eith the SCF and
passes the primitives between the Signalling Control Interface and the CSAs and between the SCF interface and the
CSAs.

Fig. 3 shows a general example scenarium for IN related to the SDL model. The IBI interface is an internal intra
BCSM interface between two half calls.

The full SDL model consits of two half calls as indicated in Fig. 4. Fig. 2 is a refinement of the SSF/CCF block. It
shows one half call under control of the SCF, including the service switching and call control functions. In order to
operate the model, the Block SSF_CCF needs to be doubled to get two half calls. In this way the full functionality of
the interworking between the O-BCSM and T-BCSM can be simulated.

The model has three interfaces. The SigCon interface could, for example, be a DSS1 interface. The Messages on
SigCon are abstract and have to be mapped to a real protocol, e.g.DSS1, in a concrete case. IBI is completely
internal to a switch. The INAP interface to the SCF is the one with the standardized INAP messages. Because the
INAP interface is handeled with the TCAP protocol, a TCAP adapter process is added.

The usage of SDL stands and falls with the availability of powerful tools. In the case of the INAP SDL model, the
SDT tool has been used for editing, simulation and validation. Examples of simulation runs with the SDT
SIMULATOR are shown in the next section. In addition to the standard SDL tools the SDT-ITEX LINK and
AUTOLINK tools [6], [7] have been used to facilitate the generation of the test cases. The test case generation is
also explaned in a following chapter.

The SDT VALIDATOR has been used to validate the SDL model in parts according to the method described in [8].
A full and systematic validation proved to be difficult at the beginning because of the size of the model. A large
amount of the errors have been found during the test suite development when the SIMULATOR was used. Since the
test purposes cover most of the interesting behaviour of INAP, there is some confidence that the model is fairly
correct with respect to the intended behaviour. However, a full correctness prove, according to whatever correctness
criteria could be defined, was not done and seems to be almost impossible due to the size and complexity of the
model.

4 EXAMPLE OF A SIMULATION RUN

The SIMULATOR proved to be useful, in particular in order to debug the model. It is almost impossible to correctly
specify a large model like the one for INAP without frequently checking its behaviour by simulation. In particular
the fact that a number of different people were involved in the specification process guarantees a lot of specification
errors. Even some fundamental errors were found this way.

Virtual Block Type
<<System Type CS1_INAP>> SSF_CCF

2(7)

IH(1,1):
Interface_
Handler

CSA(0,):
CallSegmentAssociation

CS(0,):
CallSegmentSSF(0,):

SSF_FSM

O_BCSM(0,):
OriginatingBCSM

T_BCSM(0,):
TerminatingBCSM

SCF
(CS1_INAP_Prim_To_SCF)

(CS1_INAP_Prim_From_SCF)

SigCon

(SigCon__
Out)

(SigCon__
In)

SigCon_Interface

(SigCon_In)(SigCon_Out) SigCon

SCF_Interface

(CS1_INAP_Prim_To_SCF)

(CS1_INAP_Prim_From_SCF)

SCF

SSF_Interface
(CS1__
SSF_Out)

(CS1__
SSF_In),
(CS1_SRF__
In)

CS SSF

O_BCSM
(O_BCSM_Out)

(O_BCSM_In)

CS

O

T_BCSM
(T_BCSM_In)

(T_BCSM_Out)

T

CS

CS_Interface

(CS_In)

(CS_Out)

CS

CSA

CSA_Interface

(CSA_In)

(CSA_Out)

CSA

IH

IBI

(IBI)

(IBI)

IBI_Interface

(IBI) (IBI)

IBI

SCF
(via TCAP)

INAP

Fig. 2 The INAP CS1 SDL model, half call view

SSF/
CCF

SSF/
CCF

SSF/
CCF

SSF/
CCFIBI

e.g. DSS1

e.g. No.7 e.g. No.7

SSF/
CCF

SSF/
CCFIBI

e.g. DSS1

half call

Local exchange Transit exchange Local exchange

IBISigCon SigCon SigCon SigCon

Fig. 3 General example scenarium for INAP showing the SSF/CCF only

IH

CS

CSA

O T

SSF

IH

CS

CSA

O T

SSF

SCF

System Type CS1_INAP

Sig
 Con

Sig
 ConIBI

INAP

SSF/
CCF

SSF/
CCF

TCAP adapter

Fig.4 Two half calls

INHERITS <<System Type CS1_INAP>> SSF_CCF;

Redefined Block Type
<<System Type CS2_INAP>> SSF_CCF

2(5)

IH

CSA

CS

T_BCSM

SSF

O_BCSM

SCF
(CS2_INAP_Prim_From_SCF)

SCF2_Interface

(CS2_INAP_Prim_From_SCF)

SCFSigCon2_Interface

(SigCon2_Out) (SigCon2_In)
SigCon

SigCon

(SigCon2__
Out)

(SigCon2__
In)

IBI2

(IBI2)(IBI2)
IBI

IBI

(IBI2)

(IBI2)

CSA2_Interface

(CSA2_In)

(CSA2_Out)

CSA

IH

CS2_Interface

(CS2_In)

(CS2_Out)

CS

CSA

T_BCSM2
(T_BCSM2_In)

(T_BCSM2_Out)

T

CS

SSF2_Interface

(SSF2__
Out)

(SSF2__
In)

CS
SSF

O_BCSM2
(O_BCSM2_Out)

(O_BCSM2_In)

CS

O

Fig.5 INAP CS2 model which inherits the CS1

3 TOOLS

The following message sequence chart (MSC) shows the interworking between the environment (SCF and signalling
interface), IH, CSA, CS, SSF and O_BCSM after a SetupInd is received through the SigCon interface. For brevity,
only the first few signal exchanges are shown.

Trace generated by
SDT TTCN Link 1.02

env_0

IH

IH_1

CSA

CSA_3

CS

CS_4

SSF

SSF_5

O_BCSM

O_BCSM_6

SetupInd

(. (. FromAddress, 0, 0, 36 .), 0, 1001, 1002 .)

SetupInd

(. (. FromAddress, 0, 0, 36 .), 0, 1001, 1002 .)

SetupInd

(. (. FromAddress, 0, 0, 36 .), 0, 1001, 1002 .)

SetupInd

(. (. FromAddress, 0, 0, 36 .), 0, 1001, 1002 .)

DP

origAttempt, 1

DP

origAttempt, 1

PICResum

1

PICResum

0

DP

origAttemptAuthorised, 1

DP

origAttemptAuthorised, 1

PICResum

1

Example for the Three Party Call setup as seen from the environment
The following message sequence chart (MSC) shows an example of the interworking between the SDL model and
the environment during a Three Party Call. The MSC is developed according to the architecture of Fig. 4. The
internal message exchange of the Two-Half-Call CS2_INAP model is not shown in the MSC. There are three local

exchanges involved: A, B and C. From the point of view of the MSC they are all environments, together with the
SCF. For the sake of clarity these environments are each put on a different process instance axis, each one
corresponding to one point of control and observation (PCO) as shown in Fig. 6.

env_0 CS2_INAP env_0 env_0 env_0

SetupInd

(. (. FromAddress, 0, 0, 36 .), 0, 1001, 1002 .)

ApplicationBeginPrim

1

InitialDPPrim

(. 1, 0, 1, 1, analysedInformation, 0, 0 .)

RequestReportBCSMEventPrim

1, (: (. oMidCall, notifyAndContinue, 0 .), (. oDisconnect, interrupted, 0 .) :)

ContinuePrim

(. 1, 0 .)

SetupReq

(. (. FromAddress, 1, 1, 36 .), 1, 1001, 1002 .)

CallProgressInd

(. (. ToAddress, 1, 1, 37 .), BptyAlerted .)

CallProgress

(. (. ToAddress, 1, 0, 36 .), Alerting .)

SetupConf

(. (. ToAddress, 1, 1, 37 .), 1, 1001, 1002 .)

System under
Test

SCF Party CParty BParty A
Trace generated by
SDT TTCN Link 1.02

SetupResp

(. (. ToAddress, 1, 0, 36 .), 1, 1001,

ServiceFeatureInd

(. (. FromAddress, 1, 0, 36 .) .)

EventReportBCSMPrim

(. 1, oMidCall, 0 .)

RequestReportBCSMEventPrim

1, (: (. oMidCall, notifyAndContinue, 0 .), (. oDisconnect, interrupted, 0 .) :)

SplitLegPrim

(. 1, 0, 2, 2 .)

ConnnectPrim

(. 1, 2, 2, 1003 .)

SetupReq

(. (. FromAddress, 2, 1, 36 .), 2, 0, 1003 .)

CallProgressInd

(. (. ToAddress, 2, 1, 38 .), BptyAlerted .)

CallProgress

(. (. ToAddress, 1, 0, 36 .), Alerting .)

SetupConf

(. (. ToAddress, 2, 1, 38 .), 1, 1001, 1003 .)

SetupResp

(. (. ToAddress, 1, 0, 36 .), 1, 1001, 1003 .)
*

ServiceFeatureInd

(. (. FromAddress, 1, 0, 36 .) .)

EventReportBCSMPrim

(. 1, oMidCall, 0 .)

MergeCallSegmentsPrim

(. 1, 2, 1 .)
*

SCF

CS2_INAP

two half calls

PCO

PCO
A

B

C

PCO
PCO

Fig. 6 PCOs for three party call

5 USAGE FOR TEST CASE GENERATION

Service development, feature interaction studies, switch design, test case generation
method for TP development, structure of the test suite

The purpose of the SDL model was not only to provide a firm basis for the INAP standard, Annex A of [4], but also
facilitate work in different areas, such as service development, feature interaction studies, switch design and test case
generation.

ETSI has particular interest in the last point, test case generation. The expectation was that through the use of
advanced tools the development of a test suite could be facilitated. The authors were involved in a project team that
was set up for developing a test suite.

The development of the test purposes (TP) was done in two steps.

1) A rough TP was defined by hand. It illustrates the basic behaviour in Message Sequence Chart (MSC)-like
form[2] which is expected from the implementation under test (IUT). The rough TP does not contain all the
constraints in all detail. The rough TP makes reference to a preamble and a postamble.

2) A detailed TP is developed by simulation. The reason for using simulation is that it can be done step by step while
the SDL model prompts the developer for the correct items, e.g. PCOs, PDUs, formats, etc. The usual test case is
much smaller than the example of above. It consists of reusable preamples and postambles and a test body that tests
only a few operations in combination.

An MSC for documentation contains only references to constraints. The constraints themselves are not in the MSC,
because they may be very large and confuse the understanding of the basic behaviour. The MSC for documentation
is edited on the PR (phrase representation of MSCs) level. Constraints are replaced by identifiers (e.g.
IDP_constraint_1, ...). The constraints are then placed outside the MSC.

Pre- & Postambles were developed during the simulation. Autolink does not support the reference mechanism of
MSC’96. Pre- & Postamble are therefore normal MSCs. The referencing is done for documentation only for the
moment.

Those sequences of events which were likely to be reused frequently were good candidates for preambles and
postambles, but individual Pre- and Postambles for a test case are not excluded.

The simulator, when calculating a path through the system, always follows one alternative when more than one is
possible. In some cases a range of values is allowed on receive statements. They result from different paths in the
system. Since these cases are not very frequent the ranges were added later by hand. The simulation was done only
once for one value.

6 CONCLUSIONS

The result of this effort is the INAP SDL model an ETSI test suite for CS2 derived out of it.

The main motivation for the tool-based approach for test case generation was the expected time saving. Test case
development is a costly activity. Usually there is only little voluntary support from individual companies, although
the test cases themselves are very welcome by a large number of users. From the tool-based approach through the
use of SDL, expectations arise about a less expensive test suite production process. Unfortunately it is not easy to
obtain exact data which prove a specific time saving. To do this in a particular case, two teams are needed which
start at the same level, with the same average skills. One team does the test case generation manually and the other
through SDL. Such an experiment is very expensive if it is to be done with a practical example such as INAP. But if
it was performed this way, one would have one item of data. In order to achive a statistically relevant statement, one
would have to do many such experiments. This has never been done, for obvious financial reasons.

However, one can give a subjective estimate and compare the manpower needed with other similar projects. From
this comparison it seems reasonable to state that there is some considerable time saving, if the time and effort spent
for making the SDL model is not fully counted. In the case of the INAP protocol the SDLs were done for various
reasons, among them for achieving a firm and solid definition of the protocol mechanisms. Therefore the SDL
existed irrespectively of the test suite development.

7 REFERENCES

[1] ITU-T Z.100: Specification and Description Language SDL, Geneva, 1996.

[2] ITU-T Z.120: Message Sequence Charts MSC, Geneva, 1996.

[3] ITU-T Q.1218: Intelligent network application protocol, CS1, 1997.

[4] ITU-T Q.1228: Intelligent network application protocol, CS2, 1997.

[5] Ellsberger, J., D. Hogrefe, A. Sarma: SDL - object oriented language for communication systems,
Prentice-Hall, 1997.

[6] M. Schmitt, J. Grabowski, D. Hogrefe, B. Koch, A. Ek: Autolink – Putting SDL-based test generation into
practice, in: Proceedings of the 11th International IFIP Workshop on Testing of Communicating Systems
(IWTCS'98), Tomsk, Aug. 1998.

[7] A. Ek, J. Grabowski, D. Hogrefe, R. Jerome, B. Koch, M. Schmitt: Towards the Industrial Use of
Validation Techniques and Automatic Test Generation Methods for SDL Specifications, in: Proceedings
of the Eighth SDL Forum, Paris, 1997.

[8] Hogrefe, D.: Validation of SDL Systems, Computer Networks and ISDN Systems, Elsevier Science,
vol. 28, no.12, 1996.

