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Abstract
In this paper, we develop a non–interleaving semantics and an interleaving semantics for MSC’96 based on the
model of families of partially ordered sets. These semantics are no denotational semantics, but are defined via
translations of the textual syntax for MSC’96 into a process algebra. We show that the interleaving semantics
agrees on BMSC with the standardized semantics for MSC’92, while the non–interleaving semantics can be given
an interleaving interpretation.
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1 MOTIVATION

With the recent additions given in [3], Message Sequence Charts have become a very sophisticated formal de-
scription technique for the specification of distributed and reactive systems. Thus, one has a fully developed
specification language for a constraint oriented specification of systems.
Yet, there is only a tentative semantics for fullMSC’96 given in [6]. This semantics is an interleaving semantics,

i. e. the behavior of a system is modeled by sequences of transitions. The intuition behind this approach is that
actions are atomic and consume no time, and furthermore that at each moment in time only one action can be
executed.
Such an interleaving semantics does not model distributed and communicating systems faithfully, because as

long as there is no direct communication or synchronization between events at different locations in a distributed
system, there are no causal relations between these events. With respect to this, a non–interleaving semantics
would do a better job: Causally not related events in a system trace would be modeled by unrelated elements in a
partially ordered trace of a system.
This especially holds if one is about to take the transition from untimed systems to timed systems, i. e. systems

where actions consume time. Here, using transition systems as a system model usually leads to complicated and
unintuitive results. Mostly, instantaneous actions are used together with (time consuming) delays in such models.
In reality, we have actions consuming time, providing for interesting situations such as “event happens while
event is still happening”. We are convinced that this transition from untimed to timed systems can be modeled
more naturally with non–interleaving models, such as Petri nets or event structures.
In the scope of this paper, we give a non–interleaving semantics to MSC. This semantics will be based on

families of labeled partially ordered sets (posets), a model introduced by Rensink in [8] as a quite general event–
based model. We have chosen this model over other event–based models (for example prime event structures [10])
for its direct representation of system runs as partially ordered traces.
This paper proceeds as follows: First, we define a process algebraic language which we use in our construction

of a semantics for MSC by translating MSC to terms in the process algebraic language. Next, we define two differ-
ent semantics for the process algebraic language, an interleaving one and a non–interleaving one. By composing
these the translation function and the denotation function we will get an alternative interleaving semantics for MSC
as well as an non–interleaving semantics. We will compare these new semantics to the one given for MSC’92 in
[2]. Finally, we close the paper with some conclusions and perspectives on future work.



2 TRANSLATINGMSC TO A PROCESS ALGEBRA

To give a semantics to MSC, we will translate it into a process algebraic language instead of giving a denotational
semantics directly to the MSC syntax. This has the advantage of making it possible to use different models for the
semantics for this language. We will use two event oriented models in the next sections.
We start by developing a process algebra for describing the behavior of MSCs. As a basis, we choose an

extension of the process algebra given by Winskel and Nielsen in [11]. Its syntax is given by

where is a label, is a subset of labels and is a partial function from labels to labels. We will denote the class
of processes generated with this syntax with . In this language, denotes a process that terminates instantly;

denotes a process that performs the action and then behaves like ; denotes the choice between the
behaviors of the processes and ; denotes the behavior of two processes and observed in parallel,
the observations being pairs of labels or , with being an idling action of a process; denotes the restriction
of the behavior of to just those actions labelled with symbols in ; denotes a relabelling of the actions in
according to the labelling function ; and denotes a recursive behavior with being a process variable.
Our definition of deviates from the process algebra presented in [11] in two aspects: We introduce another

operator denoting the delayed choice operator from [1], and we allow the renaming function in to be
partial. The relaxation with respect to the relabelling operator allows us to hide actions from the behavior of a
process by “forgetting about them”, instead of restricting the behavior of it to behaviors not doing specific actions
at all (like the restriction operator does). The first change is a real extension. Delayed choice cannot be expressed
by a combination of the other operators, but is no universal construction in the categorical setting of [11], as it can
be derived from the sum operation in the models. The same holds for our relaxation of relabelling. Furthermore,
we allow processes to be named inside process environments.
To give a semantics to MSC, we start with a fragment of the language describing Basic MSCs (BMSCs). The

textual syntax of this fragment is shown in Figure 1 and is a simplified form of the textual syntax for MSC’96 pre-
sented in [3]. To encode BMSCs into process algebraic terms, we first have to fix the set of actions underlying the
terms. Letting be the set of instance identifiers with being the identifier for the environment,

be the set of Message Sequence Chart identifiers, be the set of action identifiers and be the
set of message identifiers, we define the set of actions to be

In this alphabet, denotes the receiving of message from instance by instance ,
denotes the sending of message from instance to instance , and denotes the execution of action
by instance . The two special actions and denote the start and end of instance , respectively. We
use these special actions in modeling the weak sequential composition of MSCs.
We proceed in a bottom–up manner, defining translation i for each nonterminal <i> of the syntax in Figure

1. Starting out with inputs, outputs and actions, we define translation functions

in from <address> <address>

out to <address> <address>

action

parameterized with the instance identifier, prefixing the input, output and execution actions of the process algebra
with start and termination actions for the instance. This may seem odd at first sight, but will become clear as soon
as we define a translation function for the instance body. But first we define the translation address used in the
equations above:

env



<msc> ::= msc <msc name>; <msc body> endmsc;
<msc body> ::= <> | <inst def> <msc body>
<inst def> ::= instance <inst name>; <inst body> endinstance;
<inst body> ::= <> | <event> <inst body>
<event> ::= <out> | <in> | <action> | <coregion>
<out> ::= out <msg name> to <address>
<in> ::= in <msg name> from <address>
<action> ::= action <at>;
<address> ::= <inst name> | env
<coregion> ::= concurrent <coevents> endconcurrent;
coevents ::= <> | <in> <coevents> | <out> <coevents>

Figure 1: Simplified syntax for BMSC

The special events and are also used in the definition of the translation of coregions. Here,
these actions are used to gather the events in the coregion by synchronizing on the start and end actions. This is
done with the synchronization operator defined for as

restricting the actions of the product to the label set

and relabelling the labels with the function

With this operation, we are able to define the translation for coregions as

concurrent <coevents> endconcurrent; <coevents>

The translation for coevents is done using the equations

<>

<in> <coevents> <in> <coevents>

<out> <coevents> <out> <coevents>

the sequence as the translation for the empty sequence of coevents serving as a “connector”
for the remaining coevents or events in the instance.
How do we translate the bodies of instances? For this, we use an operator for weak sequential composition,

which we define as a shorthand notation in our process algebra as

with and being process terms. The unrestricted product is restricted to the label set

thus forcing the events in to happen strictly after the events in . Hence, the instances are “pasted” together,
synchronizing the action of with the action of . With the relabelling function defined as



we drop the distinction between actions from and , while also dropping the now superfluous composite action
at the point of connection between and leaving it out of the domain of .

With this operation, we are able to define the translation of an instance body as

<>
<event> <inst body>

<event> <inst body>

with being defined as

<in> <in>
<out> <out>

<action> <action>
<coregion> <coregion>

For the definition of instances, the instance identifier in the definition is used as an additional parameter for the
translation function for instance bodies, leading to the definition

instance ; <inst body> endinstance;
<inst body>

Now the translation of Message Sequence Chart poses no problem: the instances in the body are translated, and
the translation of the complete MSC simply is the unsynchronized parallel composition of the translations of the
instances. Thus, the definition for reads

<>
<inst def> <msc body>

<inst def> <msc body>

using the synchronization operator with an empty synchronization set for the parallel composition.
For the translation of an MSC definition, we define the translation function to return an process environment

by binding a process algebraic term (the translation of the MSC body) to an identifier (the name of the MSC). But
furthermore we have to take care of the communications between the instances. Here, we have to define simple
buffers guaranteeing the right order of and events. This can be done with the definition

building a matrix of unsynchronized simple channels that take care of the delivery of specific messages. In this
definition, the operator denotes the unsynchronized parallel composition of its argument pa-
rameterized with all combinations of and . As we are using recursive process definitions for the translation
of High–Level MSCs (HMSCs), we are not able to take the simpler solution

Even though we rely on the uniqueness of message identifiers in MSCs, possible loops in HMSCs and the weak
sequential composition of nodes in HMSCs require the single transmission processes in the channel collection to
spawn copies of themselves after the sending of the message.
Defining the synchronization set

we can define the translation of a MSC to be

msc ; <msc body> endmsc; <msc body>

The need of returning an environment of process definitions instead of just one tuple consisting of a MSC identifier
and the translation of the body will become clearer when we take a look at the translation of High–Level MSCs.
With the definitions made above we are able to describe Basic MSCs as environments of process definitions.

Next, we are going to extend our syntax by allowing to specify High–Level MSCs. The additional syntax rules are
shown in Figure 2. These rules can also be found in [3].



<msc> ::= msc <msc name>; expr <msc expr> endmsc;
<msc expr> ::= <start>; <node exprs>
<start> ::= <label> <alternatives>
<alternatives> ::= <> | alt <label> <alternatives>
<node exprs> ::= <> | <node expr> <node exprs>);
<node expr> ::= <label>: <node> seq (<label> <alternatives>);

| <label>: end
<node> ::= empty | <msc name> | <par expr> | connect
<par expr> ::= expr <msc expr> endexpr <par exprs>
<par exrs> ::= <> | par expr <msc expr> endexpr <par exprs>

Figure 2: Simplified syntax for HMSC

For defining the translations of HMSCs, we again proceed in a bottom–up manner, giving the definition of
par expressions later in this section. Hence, we start out with the definition of the translation function for HMSC
nodes:

empty

connect

In this translation, empty as well as connect are mapped to a collection of process denoting just the start and
termination of instances. The occurrence of the MSC identifier on the right hand side of the second equation
means the interpretation of as a process name.
Alternatives in HMSCs are meant to be accumulated with delayed choice according to [3]. This is captured in

the translation function for alternatives reading

<>
alt <alternatives> <alternatives>

With this definition we are able to give a translation for node expressions, mapping each node expression to an
association in an environment, hence

: <node> seq ( <alternatives>);
<node> <alternatives>

: end

These environments are then accumulated in the translation of a list of node expressions:

<node expr> <node exprs>
<node expr> <node exprs>

As a translation of a starting node of an HMSC we choose a process term gained from a delayed choice between
the set of labels occurring in the start expression, as they denote the processes starting from that labels:

<alternatives> <alternatives>

An MSC expression contains a start node description as well as a set of node expressions. Hence, we translate
a MSC expression into a tuple consisting of a process term and an environment:

<start>; <node exprs> <start> <node exprs>

These tuples are then separated by the extended translation function for MSCs. The environment found in the
translation of the node expressions has to be extended with an association of the MSC identifier with the start
expression. Thus we define

msc ; expr <msc expr> endmsc;
<msc expr> <msc expr>



with the selection functions and being defined as follows:

So far, we have presented not much more than a change in syntax — going over from the concrete textual
syntax of HMSC to the more abstract syntax of our process algebra . In the next section, we consider two
different semantics for this process algebra.

3 BUILDING A FAMILIES OF POSETS SEMANTICS FOR MSC

For the semantics for our process algebra , we need a suitable class of models. We have decided to use families
of labelled partial ordered sets (posets) as this class of models, a model introduced by Rensink in [8] as a quite
general event–based model. In this model, the behavior of a system is modeled by the evolution of traces, starting
with an empty trace.
To define families of posets, we first have to introduce labelled posets as an auxiliary notion.

Definition Let be a set of labels. A partially ordered set labelled over (lposet) is a triple
with a set of events, a reflexive, anti–symmetric and transitive

order (i. e. a partial order) on , and a labelling function. The class of all labelled
partial orders is denoted .

In the setting presented here, we will label the events in an lposet with actions, hence an event denotes the
occurrence of the action it is labelled with.
For comparing labelled posets, we define a number of ordering relations on them. The first one focuses on the

causality information conveyed by the orders inside the posets.

Definition Let and be lposets. is called smoother than , denoted , if and only if

holds.

That is, a lposet is smoother than an lposet , if more events in it are causally dependent on each other.
The next relation defined on lposets is the prefix relation:

Definition Let and be lposets. is a prefix of , denoted , if and only if

holds. is an immediate predecessor of , denoted , if and only if .

With these definitions, we are able to define families of labelled posets.

Definition A family of labelled posets is a non–empty, –left–closed set of labelled partial orders,
which are compatibly labelled, i. e. for a family of lposets the condition

holds. The class of all families of labelled partial orders is denoted . Families of lposets will be
ranged over by the letters , and .

In this definition, the condition of prefix left–closedness ensures that every possible lposet leading up to a given
system run, which is itself a partial system run, is included in the family. The condition on being compatibly
labelled ensures that the same event used in different members of the family cannot have different labels. This is
only partially ensured by the prefix closure, as lposets with a common prefix do not have to be prefixes of another
lposet themselves.
As special cases of the definitions of labelled partial orders and families of these we also consider labelled total

orders and families of labelled total orders, denoting them with and without elaborating the (obvious)
definitions.



As we are going to develop a compositional semantics for the process algebra , we now have to define
operations on families of posets that mirror the intended effects of the operators in the process algebra. We begin
with the prefixing operator of . On the model level, this operator should prefix every trace in a family of
posets with a new event labelled . For this, we define the prefixing of lposets as

and use it in the definition of the prefixing of a family of posets in the obvious way:

The choice operator on could easily be modeled as the union of two families of lposets. Yet, to stay inside
the categorical framework of [11], we define injection functions and on lposets as

and

marking every lposet in sum of two families with the argument position of the family of lposets it came from.
Hence, we define the sum of two families of lposets as

Similarly we handle the product of families of lposets. The standard technique in event–based models is to
construct the events of a product by taking pairs of events from the operands. Such pairs are assumed to be the
result of synchronization of the two original events. A “pseudo–event” is inserted in either position of these pairs
to denote that the corresponding operand does not partake in synchronization, i. e. that in the combined event there
is no real synchronization involved. We define two projection functions and on events as

undefined if
otherwise.

We extend these functions to lposets by defining

with the event set

the partial ordering relation

and the labelling function

The product of two families of lposets then is defined as

i. e. we take the maxima with respect to “unorderedness” of those lposets that project on something smoother than
lposets in and , respectively.
For the relabelling operator we again define first a relabelling on lposets as

where



The restriction to the new event set in this definition has its causes in being possibly partial. Events that are
not assigned any label by the new labelling function have to be removed from the event set as well as the
ordering relation of the resulting lposet. Thus, we define the relabelling of a family of lposets by

For the restriction operator of , we filter the family of lposets and discard all those posets containing
elements outside of the label set :

We do not present the semantics for the delayed choice operator and the recursion operator in the scope of
this paper. These operators are the more complicated ones, the delayed choice operator requiring the selection
of specific members of a product family of posets, and the recursion operator requiring an introduction into fixed
point theory. These two operators will be denoted by and .
With the operators presented so far, we are able to define a non–interleaving semantics for . For this, we

define a denotation function taking as its arguments a process term and an environment ,
being a set of variables. The environment is deduced from a process environment obtained from the translation
process described in the previous chapter. Hence, we are able to define our compositional semantics as

To define an interleaving semantics for , we simply restrict our attention to families of ltosets instead of
families of lposets. Nearly all the operators we defined on families of lposets also work as expected on families of
ltosets, the notable exception being the product operator. Here, we need a different definition, as the maximal set
with respect to “roughness” of the posets will contain mainly partial orders instead of total ones. This can easily
be fixed by requiring the projections used in the definition of the product on families of lposets to be equal to the
respective members of the argument. Hence, we define

This way, we are able to define the interleaving semantics mirroring the equations for the denotation function
given above, with the equation for the product operator in adapted.

How do these semantics relate to the one standardized in [2]? To show the consistency of our semantics with
the MSC’92 semantics, we first look at our interleaving semantics. After building a labelled transition system from
a family of ltosets, we check for strong bisimilarity between this transition system and the process graph associated
to the process algebraic semantics of [2].
So let be a family of lposets. We define the transition system associated to as



with the transition relation defined as

That is, we take the members of the family of lposets as the nodes in the transition systems, allowing transitions
only from direct predecessors of a lposet. Abstracting from and actions, we get the following theorem:

Theorem For a BMSC , the transition system and the synchronization tree
obtained from unfolding the process graph for , with being the relabelling function

undefined if or for some
otherwise.

To relate our –semantics to the standardized one, we show a property of the diagram in Figure 3. Assuming
to be a MSC with MSC identifier , we observe that

holds, where is a function defined as

which sequentializes each member of its argument. This we, we inherit the property of the interleaving semantics
stated above.

Figure 3: Giving two different semantics to MSC

4 CONCLUSIONS AND FUTURE WORK

What have we achieved so far? We have shown how to construct a non–interleaving semantics for MSC. This
semantics follows the idea presented in [2] and [5]. We have also constructed an interleaving semantics for MSC
that agrees with the standardized one for Basic MSCs.
But why again an translational approach? There already have been presented operational semantics for MSC

[7], as well as an non–interleaving semantics based on partially ordered multisets [4]. What is the difference
between these semantics and the one presented in this paper?
The operational semantics from [7] is an interleaving semantics, which is not bad in itself. Yet, if we are

about to take the transition to timed systems (and there are already extensions of MSC with the incorporation
of time aspects, e. g. [9]), this interleaving behavior is in our opinion more of a hindrance than really helpful.
Simultaneously occurring events that consume time cannot be faithfully modeled in an interleaving setting. They
mostly are modeled by using instantaneous events together with delay events. In this aspect, non–interleaving
semantics are advantageous, as two unordered events and are not artificially ordered, hence the assignment
of timing information to the events is easier.
The denotational semantics from [4] is conceptually similar to the semantics in terms of families of lposets we

are presenting in this paper. The main differences lie in the two–step construction process we are applying here,



and in the usage of a model not abstracting from event identities (as pomsets are isomorphism classes of labelled
posets). Yet, the two–step approach has its own advantage: it is easily possible to give a different semantics for ,
using as the class of models for instance Petri nets, event structures or asynchronous transition systems. Except for
our relaxation on the relabelling operator and the delayed choice operator introduced into , such semantics are
readily available, for instance in [11].
For our future work, we will concentrate on the introduction of timing aspects into the semantics shown here,

working towards a semantics for a timed variant of MSC’96.
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