
Tool Support for SDL Patterns1

Daniel Cisowski, Birgit Geppert, Frank Rößler, Markus Schwaiger
Computer Networks Group
Computer Science Department
University of Kaiserslautern
P.O. Box 3049, D-67653 Kaiserslautern, Germany
{cisowski, geppert, roessler, schwaige}@informatik.uni-kl.de

Abstract
An SDL pattern is a reusable software artifact representing a generic solution for a recurring design problem. It is
required that SDL be the applied design language. Thereby we benefit from the formal basis provided by SDL.
Instead of specifying and applying the patterns rather informally, a formal target language such as SDL offers the
possibility of precisely specifying how to apply a specific pattern, under which assumptions this will be allowed,
and what properties result for the embedding context.

In the paper we discuss aspects of tool support for SDL-pattern application. In particular, we describe require-
ments, design decisions, and some implementation issues of a prototype SDL-pattern editor that is currently under
development. The SDL-pattern editor mainly supports syntactical application and documentation of SDL patterns.

Keywords
SDL patterns, tool support, SDL methodology, software reuse, formal methods

1 INTRODUCTION

In [3] [5] [6] we present the SDL pattern approach2 that integrates the well-known design pattern concept with
SDL. Generally speaking, SDL patterns describe generic solutions for recurring design problems, which can be
customized for a particular context. Contrary to the traditional reuse paradigm of class and function libraries, SDL
patterns focus on the invariant parts of a design solution and therefore offer by far more flexibility for adaptation
to the embedding context. That is, potential of reuse is substantially increased.

While conventional design patterns [1] [2] are specified independently from a possible design language, it is as-
sumed that the target language for SDL pattern instantiation is SDL. Thereby we benefit from the formal basis pro-
vided by SDL, so that SDL patterns are actually characterized as formalized design patterns. Instead of specifying
and applying the patterns rather informally, a formal target language such as SDL offers the possibility of precisely
specifying how to apply a specific pattern, under which assumptions this will be allowed, and what properties result
for the embedding context. This is a major improvement compared to conventional design patterns, which mainly
rely on natural language based pattern description and still have to leave pattern application to a large degree to the
personal skills of the system designer.

The specification of an SDL pattern is organized by a standard description template. The items most relevant to
tool support are sketched in the following: the syntactical part of the design solution is defined by a generic SDL-
fragment, which has to be adapted and textually embedded into the context specification when applying the pattern.
An SDL-fragment may consist of several elementary units (called elements). After adaptation a pattern element is
comparable to an SDL macro definition. Pattern elements that are to be embedded within the same scope unit of
the context specification are called associated elements. Adaptation and composition of SDL-fragments is pre-
scribed in terms of syntactical embedding rules, which, e.g., guide renaming of generic identifiers or specialization
of embedding design elements. Usually, pattern semantics is not completely captured by an SDL-fragment. Thus,

1. This work is supported by the German Science Foundation (DFG) as part of the Sonderforschungsbereich
SFB 501 Development of large systems with generic methods.
2. With a major case study presented in [12].

additional semantic properties are included, specifying preconditions for pattern application as well as behavioral
changes of the embedding context. Also, restrictions on the refinement of pattern instances are specified in order
to prevent a pattern’s intent from being destroyed by subsequent development steps.

Along with the standard template for SDL pattern description, we have defined an incremental configuration pro-
cess for the application of SDL patterns. It is the design activity of the process model where SDL patterns actually
come into place: starting point is a context SDL specification, obtained from the previous development step. In
order to meet new requirements a number of SDL patterns are selected and then applied to the context specifica-
tion3. The selection of an SDL pattern is supported by several items of the SDL pattern description template, name-
ly intent, motivation, structure, message scenario, semantic properties and cooperative usage (some of these items
are not mentioned above). As patterns represent generic design solutions, the corresponding SDL-fragment has to
be adapted in order to seamlessly fit the embedding context. This is instructed by the renaming parts of the syn-
tactical embedding rules. The resulting pattern instance finally is composed with the embedding context, which is
prescribed by the composition part of the syntactical embedding rules and also by refinement rules of embedding
pattern instances. The result of a design activity is an executable, intermediate SDL design specification, which
subsequently is validated in the normal way and serves as the context specification for the next development step.

In the paper we discuss aspects of tool support for SDL-pattern application. In particular, we describe require-
ments, design decisions, and some implementation issues of a prototype SDL-pattern editor that is currently under
development. The SDL-pattern editor mainly supports syntactical application and documentation of SDL patterns.

The remainder of the paper is organized as follows: Section 2 gives a general idea of tool support for SDL pat-
terns, while concrete requirements for an SDL-pattern editor are derived in Section 3. Design decisions and some
implementation issues of the SDL-pattern editor are discussed in Section 4. We summarize the results in Section 5.

2 POTENTIAL FOR TOOL SUPPORT

As already stated, formalization of SDL patterns enables validation of pattern application. Furthermore, we con-
sider formalization to be a prerequisite for tool support in general. Here were are in line with [9, 11] where tool
support for conventional design patterns is discussed. These papers clearly reveal the problems when formalization
of patterns is missing. In the following we briefly discuss the potential for tool support that SDL patterns provide
on the whole. In the next section we then derive the requirements for a prototype SDL-pattern editor that is cur-
rently under development.

According to an imaginary life-cycle of an SDL pattern, we identify several activities where tool support is pos-
sible.

• Pattern development: for the pattern engineer (the person, who develops a new pattern) it is convenient to have
some kind of repository available where SDL patterns are placed. It is necessary that this repository can generate
different views of a pattern, according to the different roles (pattern engineer, system designer, pattern tools, pat-
tern novices, ...) that agents have when working with SDL patterns. Of course information must not be stored
several times. An adequate meta language for specification of SDL patterns is necessary to fulfil these require-
ments. As mentioned above, SDL pattern specifications follow a certain description template, in which each item
applies a standard description language such as MSC, UML, temporal logic, SDL, or natural language.

• Pattern application: application of an SDL pattern is characterized by the more syntactical subtasks of adapta-
tion and composition as well as semantic issues that determine pattern selection and validation of pattern appli-
cation.

• Pattern selection can be supported by a tool, which allows the user to browse through an existing SDL pattern
pool and search for patterns that match certain criteria. Here, the pattern’s intent and motivation are of special
interest to get a quick overview of its field of application.

• Assistance in the renaming of generic identifiers (e.g., signals, states, variables) can, e.g., be provided by pre-
paring lists of identifiers from the embedding context. This will help to avoid incorrect adaptation of a pat-
tern. During composition of the pattern instance with the embedding context, new SDL constructs are added,
while parts of the given context are replaced by the inserted pattern instance. In order to ensure the intended
behaviour, embedding rules that are precisely specified in terms of the SDL syntax can be observed automat-
ically.

• Validation of pattern application has to ensure that the pattern’s intent (as defined by the pattern engineer)
is met in the given context. Partially, this is achieved by an accurate syntactical application as mentioned

3. Note that for some design problems the pool of predefined building blocks may not contain an adequate solution.
This gives rise to the development of a new SDL pattern or an ad hoc solution.

above. In addition an SDL pattern is also characterized by semantic properties that state certain assumptions
on the embedding context. These assumptions can be expressed in a temporal logic and therefore be checked
by suitable verification tools (e.g., a model checker).

• When rework is necessary after a review or during maintenance or re-engineering of a specification, tool sup-
port for a convenient deletion of embedded SDL patterns is also conceivable.

• Pattern documentation: an important advantage, commonly attributed to pattern-based design, is the implicit
documentation of the resulting product. That is, with the necessary pattern knowledge available, it is possible to
understand whole parts of the specification at once. Tool support can additionally improve readability of a spec-
ification, if convenient ways are provided to navigate and browse through the design and change the appearance
of the SDL code currently inspected (e.g., to change the colour of a certain pattern in order to emphasize its oc-
currence). Also guided design transformations such as collapsing of pattern instances are possible.

• Code generation: it has often been stated that automatic code generation from formal specifications is not effi-
cient enough for real-life applications. Here, additional semantic information that is given by the embedded SDL
patterns can help compilers to generate more optimized code.

• Quality improvement of SDL patterns and configuration process: usually reusable artifacts and reuse pro-
cedures improve as experience grows. In [7] it is shown how evaluation and continuous improvement of the SDL
pattern approach can be achieved, while the approach is applied in real projects.

3 FEATURES OF AN SDL-PATTERN EDITOR

Currently, we are developing a prototype SDL-pattern editor (called SPEEDI) that covers parts of the functional-
ities mentioned in Section 2. In particular, pattern documentation, adaptation and composition are supported. In the
following, we focus on the requirements, while further details on design decisions and implementation issues are
given in Section 4.

3.1 Pattern documentation

A pattern-based SDL specification gains an inherent structure that can significantly increase intelligibility. How-
ever, when reviewing, maintaining, or re-engineering the specification an embedded SDL pattern is not always
easy to recognize. Consider, e.g., that SDL-fragments often contain several elements, which are embedded in scat-
tered places of the context specification. As a consequence, one would have to start an inconvenient search for cor-
responding pattern elements in order to understand the pattern application (especially its embedding context). Due
to the additional overhead, detailed comments from the system designer, that may help to navigate through the
specification, are also not an adequate solution. Rather, we expect SPEEDI to reveal pattern locations automatical-
ly.

We suggest a multi-stage approach to discover embedded SDL patterns and navigate through the design. First of
all SPEEDI should always display the names of the patterns the current cursor position belongs to. The list of pat-
terns must be updated automatically, when the cursor moves. Note that elements from different pattern instances
may overlap, so that pattern instances cannot be uniquely selected by cursor positioning alone. Nevertheless, this
feature provides an overview of the locally involved pattern instances. For further investigation of an individual
pattern instance an item must be selected from the list and subsequently, the complete pattern instance (including
the scattered parts) will automatically be highlighted in the specification. That is, SPEEDI scans the specification
for corresponding pattern elements and colors the identified pattern instance for easy recognition. The applied color
should be user-specified. As already mentioned, pattern elements may be scattered all over the context specifica-
tion and thus it may be impossible to show the complete pattern instance on the editing window. For a first orien-
tation SPEEDI therefore displays a tree-like view of the specification’s structure (containing blocks, processes,
services, and procedures) where those automatons that contain some pattern elements are emphasized. Based on
this information the user can decide where to jump in the context specification to investigate other parts of the em-
bedded pattern. SPEEDI should provide jump functionalities, so that corresponding pattern parts are found by a
simple mouse click.

By the features described so far it is possible to navigate conveniently through an SDL-pattern-based specifica-
tion. For example, the user may follow an interaction scenario by traversing a sequence of BlockingRequestReply
pattern instances. Thereby it comes out that a request signal is sent over an underlying basic service and that the
transformation from protocol data units to service primitives is performed by a Codex pattern instance. Further in-
vestigation reveals that error control is achieved by a TimerControlledRepeat and a DuplicateHandle instance,
while the sequence of BlockingRequestReplys is continued thereafter.

If an embedded pattern is well understood within its context and the internal structure is of no interest currently,
the pattern instance might be collapsed with its name and some semantic information displayed instead. As we as-
sume a priori knowledge about SDL patterns, only a few information can be enough to keep the compressed spec-
ification completely understandable. If necessary the pattern instance can be expanded again.

In some cases it is possible to build higher-level structural units from basic SDL patterns. Thus SPEEDI should
also facilitate the creation of pattern clusters from cooperating pattern instances and treat them in the same way as
normal pattern instances. That is, the features discussed above are to be extended by grouping mechanisms.

3.2 Pattern adaptation and composition

The process of adapting and composing an SDL pattern is illustrated by the flowchart of Figure 1. Actions taken
by the system designer are represented as rectangles with solid lines, while the dashed parts describe intervention
from SPEEDI.

After pattern selection SPEEDI opens an adaptation window with a corresponding template containing the SDL-
fragment and several placeholders for the items that must be adapted (e.g., signal identifiers or state names). When
adapting an SDL pattern, generic identifiers are often replaced by identifiers from the embedding scope unit. In
this case the tool needs to know where the pattern instance will be located within the context specification, so that
an adequate list of context identifiers can be prepared. As the designer is only allowed to choose identifier substi-
tutes from the offered list, we reduce possible adaptation errors. If all generic identifiers are adapted, a pattern el-
ement can be further refined. Note that an SDL pattern only represents a generic solution for a design problem and
therefore usually needs some refinement. As shown in the flowchart each adaptation step must observe certain syn-
tactical embedding and refinement rules. The rules are contained in the pattern description and SPEEDI should en-
sure that the designer keeps to them. After adaptation a pattern element is ready to be composed with the
embedding context. Therefore SPEEDI needs exact positioning information that is collected for each element of
a pattern. However, in order to keep syntactical correctness of the context specification SPEEDI should only insert
complete pattern instances into the specification.

During later development steps it is possible that embedded patterns are further refined. Whenever an existing

element
left?

yes

yes

choose a generic identifier

adapt generic identifier

yes

Figure 1: Embedding an SDL pattern

choose a group of associated elements

select SDL pattern

group

elements
of associated

left?

insert pattern instance textually

generic
identifier

left?

refine element

adapt an element

syntactical embedding rules

refinement rules

adaptation
window

list of
context identifiers

position element within

associated

specify the embedding scope unit

embedding scope unit

pattern instance is touched, we expect SPEEDI to treat this refinement in the same way as the first one. That is, the
adaptation window is opened again, containing the complete pattern instance just as before the instance was com-
posed with the embedding context. Adaptation can now be continued by further refinement of each pattern element,
while SPEEDI observes the corresponding refinement rules.

4 DESIGN DECISIONS AND IMPLEMENTATION ISSUES

A first analysis of the requirements from the previous section turns out that SPEEDI partially goes beyond the func-
tionality of a normal editing tool. For instance, the embedding of SDL patterns (Section 3.2) is comparable to the
template-oriented style of a syntax-directed editor. Furthermore, a tree-like view of the specification’s structure
(Section 3.1) needs a syntactical analysis of the SDL specification, while the preparation of context identifiers for
pattern adaptation (Section 3.2) requires semantic analysis. For the development of a prototype, however, our main
goal is to demonstrate the practicability of SDL-pattern-based design. We therefore made some general design de-
cisions that should help to save resources:

• SPEEDI only supports SDL/PR, though it is expected that the advantages of SDL-pattern-based design increase
with a graphical representation.

• SPEEDI must integrate into an existing SDL tool environment with a suitable parser and semantic analyser.

• SPEEDI is not fully syntax-directed. For pattern application the editor must support some template-oriented ed-
iting style, but this does not hold for other SDL syntactical units.

• Advanced editing features such as pretty printing or search functionalities are not required for SPEEDI.

In the following, we explain some more specific design considerations. It turns out that those considerations con-
cerning pattern documentation apply equally to different SDL patterns, while pattern adaptation and composition
sometimes require pattern-specific solutions.

4.1 Pattern documentation

In order to realize pattern documentation, embedded pattern elements have to be located within the context spec-
ification. Therefore the SDL specification must be enriched with start and end delimiters for each pattern element.
This can be done by pattern-based reverse engineering of an existing specification or directly during pattern-based
system design. Because SDL patterns do not belong to the SDL standard, they cannot be introduced by a special
keyword. Rather, pattern information is coded by annotations that allow to locate and highlight pattern instances.
However, in order to keep readability of the resulting specification, the annotations should be made invisible. Fur-
thermore, in order to prevent unintentional destruction of pattern information, editing the pattern annotations
should not be allowed. We decided to code this information as two special SDL comments that mark begin and end
of an element. The first comment line additionally contains identification information. This information determines
the membership of a particular group of associated elements, a particular pattern, and also a pattern cluster, if ex-
istent. The pattern comments should be placed in the SDL-fragment and are inserted automatically by SPEEDI,
when composing a new pattern instance. During syntax analysis the comments are evaluated and the parse tree is
enriched with the pattern information. For each pattern element its position and identification information (element
ID, associated element ID, pattern ID, and possibly the cluster ID) are stored as attributes of the tree nodes belong-
ing to the pattern instance.

With this information we are able to identify the pattern instances the cursor currently points to: starting from
the current cursor position, the specification is searched backwards and the traversed pattern marks finally identify
the involved pattern instances. In order to highlight a selected pattern instance, its elements must first be located
throughout the specification. Therefore we need a mapping from pattern IDs to text positions of corresponding pat-
tern elements. This information is managed by a position map, i.e., an internal database where the current positions
of pattern elements are stored. The position map must be updated, while editing the specification. For lack of an
incremental SDL parser, this is not always possible for the parse tree. First of all, it would be quite inefficient to
start a complete pass of the parser after each keystroke and secondly we would have to deal with syntactically in-
correct specifications. A new parse tree is only generated, if information from the semantic analyzer is needed or
a new pattern was embedded (i.e., before and after pattern application). Intermediate changes of the specification
are only reflected in the position map.

The jump feature and collapsing functionality are also based on the position information. In order to jump to an-
other element of the selected pattern instance, the user is offered a tree-like view of the specification, which is dis-

played in a separate window. The tree reflects the SDL structure and is derived from the parse tree. The nodes
belonging to the selected pattern instance are highlighted and additional information such as the name of the in-
cluded element is listed. By pointing at a pattern element in the tree, its position in the specification is derived from
the position map and the cursor is moved to the element's location.

In order to collapse a selected pattern instance, the SDL code of its elements are cut, kept in memory, and re-
placed by some pattern-specific identification information such as pattern name or pattern ID. Which information
to display should be prescribed by a special item of the pattern description template, so that the replacement can
be performed automatically by SPEEDI. If a pattern instance contains another instance, the identification infor-
mation of each of them is placed in separate lines. When expanding a collapsed pattern instance, the stored SDL
code simply replaces the identification information again.

For user defined pattern clusters special cluster IDs are introduced. The above mentioned functions such as col-
oring, jumping, and collapsing are generalized for those cluster IDs.

4.2 Pattern adaptation and composition

In order to support adaptation and composition of SDL patterns, SPEEDI needs information from various sources
(Figure 2). In Section 3.2 we already discussed how the user (system designer) interacts with the tool. Among other
things, she specifies the embedding scope unit for each group of associated pattern elements, so that SPEEDI can
prepare a list of possible substitutes for the generic identifiers. Therefore a semantic analyser is invoked. Figure 3

shows the template for an element of the BlockingRequestReply pattern4, which is presented to the system designer
in the adaptation window. The generic identifiers are marked with inverted commas (e.g., ’reply_1’). Preparing a
list of adequate context identifiers for ’reply_1’ would cause SPEEDI to request a list of all signal identifiers from
the semantic analyser, that lie within the embedding scope unit. Similarly, SPEEDI requests a list of all state names,
if asked for the generic state name ’endRequest1’. The need for semantic analysis during the adaptation of an SDL
pattern requires the context specification to be syntactically correct. As a consequence, SPEEDI initiates a syntax
check, when the adaptation window is opened. To keep the parse tree up-to-date for visualization of pattern loca-
tions (Section 4.1), the parser is also invoked, when pattern application is completed.

The example template shown in Figure 3 allows two possible reply signals (’reply_1’ and ’reply_2’) for the two-
way handshake. However, the multiplicity of reply signals is not restricted by the BlockingRequestReply pattern
(this would otherwise reduce potential of reuse). In order to generate an appropriate template the user is asked for
the number of different reply signals, when the pattern has been selected. This and similar kinds of variations of
SDL-fragments require pattern-specific algorithms, when adapting a pattern. Since the pattern pool can always
grow, SPEEDI must be extendable on that score.

4. The BlockingRequestReply pattern introduces a two-way handshake between two automata. Being triggered, the
first automaton (Requester) sends a request and is blocked until receiving a reply. After receiving a request, the
second automaton (Replier) replies immediately. Refer to [4] for a complete specification of the pattern.

adaptation

composition

SDL/PR context specification SDL/PR context specification

(syntactically correct)
(syntactically correct)

User input:

Context information Pattern information from description template:
provided by semantic analyser syntactical embedding rules,

Figure 2: Flow of information during adaptation and composition of an SDL pattern

name of selected SDL pattern,

position of pattern elements,
pattern-specific parameters

& with embedded pattern instance

refinement rules

embedding scope unit,

The same applies to the observation of syntactical embedding and refinement rules. For instance, the substitution
of a generic identifier typically depends on syntactical embedding rules such as: "identifier A may be renamed but
is required to be locally unique". Since it is expected that the quantity of different rules be not too large, a small set
of standard routines may be sufficient in most cases. Note that the observation of a pattern’s syntactical embedding
rules also requires information from the semantic analyzer (e.g., the set of identifiers from the embedding scope
unit must be known to check local uniqueness).

Generally, composition of a pattern instance both adds and replaces parts within the embedding context. Having
this in mind, we can imagine the following special case: syntactical units of the context are completely replaced or
expanded by the pattern instance. In this case an automatic insertion is not too difficult to handle. Unfortunately,
most of the time we have to deal with the situation, that syntactical units of the embedding context are only partially
replaced, i.e., inner parts remain unchanged and are installed into the embedded pattern. This often results in ex-
tensive structural changes of the context specification. An example is given below.

The SDL-fragment in Figure 4 is a graphical representation of a template for the ReceiveMessage element as
specified by the DuplicateIgnore pattern (refer to [4] for the complete description). The dashed symbols represent
design elements from the embedding context. Since the intent of our example pattern is to discard duplicate mes-
sages of type msg, it should be inserted only after an input of that signal type. The ’msgAlreadyLogged?’ decision
with its two branches will be added to the context specification as well as the ’log msg’ task. The processMessage
comment indicates that after logging the message, it is processed normally. As a consequence, the application of
this pattern changes the structure of the embedding transition, because the normal processing of the message will
be moved into a branch of the newly added ’msgAlreadyLogged?’ decision.

In order to avoid numerous elements containing single tasks (’log msg’) or decision symbols we decided to pro-
vide a pattern template, which additionally contains information about the required context. The idea is to include
placeholders for the parts of the context that will be used unchanged within the pattern. Instead of searching an
appropriate insertion point for a multitude of small elements, we only copy the corresponding parts of the context
into the pattern template. Replacing placeholders with context information is similar to the adaptation of generic
identifiers and leads to a more gradual composition.

state waitForReply;
input ’reply_1’;
nextstate ’endRequest1’;

endstate;
state waitForReply;

input ’reply_2’;
nextstate ’endRequest2’;

endstate;

Figure 3: The ReceiveReply element of the BlockingRequestReply pattern

DIReceiveAutomaton 1(1)

msg

'msgAlreadyLogged?'

'log msg'

-

processMessage

receiveMessage

false true

Figure 4: The ReceiveMessage element of the DuplicateIgnore pattern

transition ’receiveMsg’
state ’foo’
input ’msg’
decision ’msgAlreadyLogged?’

false:
task ’log msg’
comment ’process msg’
nextstate ’foo’

true:
nextstate -

4.3 SITE - SDL Integrated Tool Environment

As mentioned above, SPEEDI relies on existing tools to support functionalities that do not directly involve pattern-
based design. For this purpose we seize the opportunity of using some of the back-end tools of the SITE project
(SITE - SDL Integrated Tool Environment) [8] [14]. It is planned that the editor cooperates with the following
tools:

• sdl96-parser (for the syntax check and building of a parse tree)

• sdl96-crossreferencer (to access the semantic information of a specification)

• sdl96-pretty printer (for a well-formatted output in the editing window)

The parser checks whether a given SDL/PR specification is syntactically correct. If it is, a parse tree is built and
stored using the common representation (CR) - an exchange format for the SITE tools [13]. In this way a CR in-
stance (the parse tree) is built, which contains the pattern information stored in the SDL comments and serves as
the basis for semantic analysis. The cross-referencer (sdl96-cross) acts as a semantic analyzer with extended func-
tionalities. It reads a CR instance, performs the semantic analysis and then supplies semantic information about the
SDL specification or some parts of it. For example, it can return all identifier definitions within the namespace of
an SDL structural unit as well as their corresponding positions in the textual representation. Refer to [10] for the
whole functionality of the cross-referencer. The pretty printer generates a well-formatted textual output from a giv-
en CR instance, that is displayed in SPEEDI's main window.

Some of these tools have an IDL-specified software interface. To communicate with them, we use the same in-
terface in our editor. Since the possibility to store pattern information as attributes of the corresponding CR nodes
is not supported yet, some of SPEEDI’s features (especially those concerning pattern documentation) currently
make use of our internal pattern database instead of the tree structure.

5 CONCLUSION

SDL patterns describe generic solutions for recurring design problems, which can be customized for a particular
context. It is required that the target language for SDL pattern instantiation is SDL. The formal basis provided by
SDL enables validation of pattern application and serves as a prerequisite for tool support in general.

In this paper we have first sketched the potential for tool support that SDL patterns provide on the whole. Fur-
thermore, we have discussed the requirements and design decisions for a prototype SDL-pattern editor, called
SPEEDI, that is currently under development. Roughly speaking, SPEEDI supports documentation as well as ad-
aptation and composition of SDL patterns. Implicit documentation of an SDL specification by highlighting embed-
ded pattern instances allows to understand whole parts of the specification at once. Readability is further improved
by providing a way to navigate through the design and to collapse inspected pattern instances. During adaptation
and composition of a pattern, SPEEDI assists in the renaming of generic identifiers and the observation of the pat-
tern’s embedding rules.

The aim of SPEEDI as a prototype tool is to illustrate the advantages of SDL-pattern-based design. Functional-
ities that do not directly involve pattern-based design are outside the primary scope of SPEEDI. Therefore the ed-
itor relies on existing tools such as the SDL parser, cross-referencer, or pretty printer of the SITE project. It is
planned to interface SPEEDI with this tool environment.

Acknowledgements
Our gratitude is extended to the research group of Prof. Dr. Joachim Fischer from the Humboldt University, Berlin
for their cooperation and the support regarding the SITE tool environment. Special thanks go to Ralf Schröder for
his cooperativeness in several email discussions.

6 REFERENCES

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software Architec-
ture - A System of Patterns, John Wiley & Sons, 1996

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns - Elements of Reusable Object-Ori-
ented Software, Addison-Wesley, 1995

[3] B. Geppert, R. Gotzhein, and F. Rößler, Configuring Communication Protocols Using SDL Patterns, in:
A. Cavalli, A. Sarma (Eds.): SDL’97 - Time for Testing · SDL, MSC and Trends, Proceedings of the 8th
SDL Forum, France, 1997

[4] B. Geppert and F. Rößler, Pattern-based Configuring of a Customized Resource Reservation Protocol
with SDL, SFB 501 Report 19/96, Computer Science Department, University of Kaiserslautern, Germany,
1996

[5] B. Geppert and F. Rößler, Combining SDL and Pattern-based Design for the Customization of Commu-
nication Subsystems, in: A. Wolisz, I. Schieferdecker, A. Rennoch (Eds.): Formale Beschreibungstech-
niken für verteilte Systeme, GMD-Studien No. 315, GI/ITG-Fachgespräch, ISBN 3-88457-315-2, 1997

[6] B. Geppert and F. Rößler, Generic Engineering of Communication Protocols - Current Experience and
Future Issues, Proceedings of the 1st IEEE International Conference on Formal Engineering Methods,
ICFEM'97, Hiroshima, Japan, 1997

[7] B. Geppert, F. Rößler, R. L. Feldmann, and S. Vorwieger, Combining SDL Patterns with Continuous
Quality Improvement: An Experience Factory Tailored to SDL Patterns, Proceedings of the 1st Workshop
of the SDL Forum Society on SDL and MSC, SAM98, Berlin, 1998

[8] M. v. Löwis and R. Schröder, Simulation of Telecommunication Systems in SDL-92 using SITE. In Y.M.
Teo, W.C.Wong, T.I.Oren, and R.Rimane, editors, World Congress on Systems Simulation, Singapur,
1997

[9] M.Meijers, G.Florijn, Support for Object-Oriented Design Patterns, Department of Computer Science,
Utrecht University, The Netherlands, April 1996

[10] Ulf von Mersewsky, Crossreferencer, Ein Beispiel für eine CORBA-basierte Integration in die SDL-En-
twicklungsumgebung SITE, Diplomarbeit, HU-Berlin, 1998

[11] B. Pagel, M. Winter, Towards Pattern-Based Tools, University of Hagen, 1996
[12] F. Rößler, B. Geppert, and P. Schaible, Re-Engineering of the Internet Stream Protocol ST2+ with For-

malized Design Patterns, accepted for the 5th IEEE International Conference on Software Reuse, IC-
SR'98, Victoria, Canada, 1998

[13] A.Schade, Eine Common Representation für SDL'92 Spezifikationen, Jahresarbeit, HU-Berlin, 1993
[14] http://www.informatik.hu-berlin.de/Institut/struktur/systemanalyse/SITE/e_index.html

