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Abstract

Message Sequence Charts (MSCs) are a technique to describe patterns of the
interaction between the components of a interactive system by diagrams. They have
become rather popular in the design of software architectures and distributed software
systems. They are used frequently to describe scenarios of interaction illustrating use
cases in software and systems development. Nevertheless, both the semantics of
MSCs as means of specification and their methodological and technical role in the
development process are not precisely clarified, so far. In this paper, we suggest a
semantic model of MSCs in terms of stream processing functions that allows us to use
them as an intuitively clear specification technique for the components of a system with
a precisely defined meaning. In contrast to other semantical models for MSCs
suggested in the literature (see [Ladkin, Leue 93, 95] and [Cobben et al. 98]) where
the meaning of message sequence charts is explained by state transition machines and
traces for the composed system, we define MSCs as a technique to specify the
behavior of the components of a system. Furthermore, we discuss the systematic use
of MSCs in the software development process.

1. Introduction

Today message sequence charts (MSCs) or extended event traces (EETs) are a well accepted
description technique. They incorporated in a number of modeling methods used in practice (see
[UML 97] or [Room 94]). They are to illustrate scenarios of interaction between distributed
interacting components collected in networks. They prove to be very helpful when illustrating
the fundamental ideas of the cooperation in distributed systems. MSCs are widely used, for
instance, in telecommunication applications for illustrating protocols as well as the cooperation
of switching components. They have found their way also into business applications. Several
object oriented development methods such as Objectory, OMT, ROOM, and UML suggest use
cases and their illustration by MSCs in order to document all possible scenarios of interaction.
This way, the behavior of a system should be completely specified by MSCs.

In the sequel we discuss the following topics and suggest answers to the following
questions:



• What is the formal meaning of an individual MSC for the components of a system?

• How can MSCs be combined?

• What is the formal meaning of a set of MSCs for the components of a system?

• What is the methodological role of MSCs and how do they fit into the development process?

• How far can MSCs serve as a precise and comprehensive mean of specification?

To answer all these questions in a precise and clear way, we have to tackle the following
question, too:

• what type of systems do MSCs refer to and what properties do they specify precisely.

In the following, we deal with all these questions. We start with a discussion of the state of the
art of MSCs, the type of systems they talk about, and introduce a reference model of a system.
In section 3 we discuss the semantics of MSCs, first for deterministic systems and after that for
nondeterministic systems. In section 4 we deal with the role of control and data states in
connection with MSCs in the development process. In section 5 we discuss the meaning of
MSCs that are seen as projections. In section 6 we deal with complete sets of MSCs by closed
world assumptions. In section 7 and the conclusion we discuss the role of MSCs in the
development process.

2. The Purpose of Message Sequence Charts

Typically, MSCs are used to describe a set of characteristic instances of system interactions in
requirements engineering and in system design. When used this way, MSCs describe properties
of a system to be constructed. This suggests to formalize MSCs as logical properties of
systems. Hence we translate a set of MSCs into a predicate on system components.

To get a clear understanding of the meaning of MSCs along these lines we need to have a
precise understanding what type of systems MSCs refer to. Therefore, when defining the mean-
ing of MSCs with respect to a system model, the choice of this model gets crucial. Clearly,
MSCs refer to systems that run concurrently and interact. We have to select a mathematical
system model on which we base a denotational semantics of MSCs.

This approach is in contrast to [Cobben et al. 98] where MSCs are translated into the terms
of a specific process algebra for which an operational semantics is provided. This way the
equivalence is based on bisimulation. This gives only a very implicit model and does not
provide a meaning to sets of MSCs as specifications of the individual components.

2.1 Selected System Model

We work in the following with asynchronous message passing since for this model message
sequence charts seem best suited. This model also fits best with the spirit of the description
language SDL in the context of which the idea of MSCs has been mainly developed (see [Broy
91] and [Hinkel 98] for a formal semantics of SDL based on this model). For synchronous
message passing systems, the concept of MSCs seems less well suited since for those systems



interleaved traces of actions are more adequate (see [CSP 85]). Moreover, for synchronous
message passing so-called refusals are quite important for a compositional semantics which are
not shown by MSCs at all (see [Hoare et al. 81])

2.1.1 Components

We think of a system as being composed of a number of subsystems that we call the
components of the system. In fact, a system itself is and can be used as a component again as
part of a larger system. A component is an encapsulated unit with a clear cut precisely specified
interface. Via its interface it is connected and communicates with its environment. In this
section, we introduce a simple, very abstract mathematical notion of a system component.

For us, a (system) component is an active information processing unit that communicates
asynchronously with its environment through a set of input and output channels. This
communication takes place in a (discrete) time frame.
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Fig. 1 Graphical Representation of a Component as a Data Flow Node

with Input Channels x1, ..., xn and Output Channels y1, ... , ym and their Respective Types

Let I be the set of input channels and O be the set of output channels. With every channel in the
cannel set I ∪ O we associate a data type indicating the type of messages sent on that channel.
Then by (I, O) the syntactic interface of a system component is given. A graphical
representation of a component with its syntactic interface and individual channel types is shown
in Fig. 1.

By Mω = Μ∗ ∪ Μ∞ we denote streams of messages of set M which are finite or infinite
sequences of elements from M and by Mϖ we denote the set of infinite streams of elements of
set M ∪ {√} which contain an infinite number of time ticks. Mathematically, a timed stream in
Mϖ can also be understood as a function N → M ∪ {√}.

Throughout this paper we work with some simple forms of notation for streams that are
listed in the following. We use the following notations for timed streams x:

zˆx concatenation of a sequence z to a stream x,

x Æ y x is a prefix of y, formally    x Æ y ≡  ∃ z: xˆz = y

x↓k maximal initial sequence of the first i sequences in the stream x,

Sx stream obtained from x by deleting all messages that are not elements of the set S,

x finite or infinite stream that is the result ofdropping all time ticks in x: x = Mx.

Let C be a set of channels with types assigned by the function

type: C → S

Here S is a set of types s ∈ S where by [s] we denote the carrier set of data elements associated
with the types. Let M be the universe of all messages. This means



M =   U{[s]: s ∈ S}

We define the valuations of the set C by the functions

x: C → Mϖ

where for each channel c ∈ C the stream x(c) is of correct type:

x(c) ∈ [s]ϖ

This set of valuations of the channels in C is described by   
r
C. Let in the following I and O be

sets of typed channels.
Given a time stream s ∈ Mϖ  we denote by s  the stream in Mω obtained by dropping all the

time ticks in s. s  is called the time abstraction of s. Similarly we denote for x ∈   
r
C by x its

time abstraction, defined for each channel c ∈ C by the equation

x.c = x.c

We describe the black box behavior of a component by an I/O-function. It defines a relation
between the input streams and output streams of a component that fulfills certain conditions
with respect to their timing. An I/O-function is represented by a set-valued function on
valuations of the input channels by timed streams. The function yields a set of valuations for the
output channels. An I/O-function is a set-valued function

f : 
r
I  → ℘(  

r
O)

that fulfills the following timing property. This property axiomatises the time flow. It reads as
follows:

x↓k = z↓k ⇒ {y↓k+1: y ∈ f(x)} = {y↓k+1: y ∈ f(z)}

Here x↓k denotes the family of streams that are the largest prefixes of the streams in x that
contain at most i time ticks. In other words, x↓k denotes the communication histories until the
time k. The timing property expresses that the set of possible output histories for the first k+1
time intervals only depends on the input histories for the first k time histories. In other words,
the processing of messages in a component takes at least one tick of time. We call functions
with this property time-guarded.

We do not consider explicit timing properties in the following. Therefore we often work for
a time-guarded function

f:   
r
I  → ℘(  

r
O)

with its time abstraction

f : (I → Mω) → ℘(O → Mω)

specified by

f .x = { y ∈ O → Mω: ∃ z ∈ 
r
I : z  = x ∧ y ∈ f.z}

By Com[I, O] we denote the set of all I/O-functions with input channels I and output channels
O. By Com we denote the set of all I/O-functions for arbitrary channel sets I and O. For any  f
in Com we denote by In(f) its set of input channels and by Out(f) its set of output channels.



2.1.2 Composed Systems

We model distributed systems by data flow nets. Let N be a set of identifiers for components
(represented by data flow nodes) and O be a set of output channels. A distributed system (ν, O)
with syntactic interface (I, O) is given by the mapping

ν: N → Com

that associates with every node a component behavior by a black box view (an interface
behavior given by an I/O-function). As a well-formedness condition we require that for all
component identifiers i, j ∈ N (with i ≠ j) the sets of output channels of the components ν(i)
and ν(j) are disjoint. This is formally expressed by the equation

Out(ν(i)) ∩ Out(ν(j)) = Ø

In other words, each channel has a uniquely specified component as its source. We denote the
set of channels of the net by

Chan((ν, O)) = O ∪ {In(ν(i)): i ∈ N} ∪ {Out(ν(i)): i ∈ N}

The set

I = {In(ν(i)): i ∈ N}\{Out(ν(i)): i ∈ N}

denotes the set of input channels of the net. The channels in {Out(ν(i)): i ∈ N}\O are called
internal.

Each data flow net describes an I/O-function. This I/O-function is called the black box view
of the distributed system described by the data flow net. We get an abstraction of a distributed
system to its black box view by mapping it to a component behavior in Com[I, O] where I
denotes the set of input channels and O denotes the set of output channels of the data flow net.
This black box view is given by the component behavior f ∈ Com[I, O] specified by the
following formula:

f(x) = {y|O: y|I = x ∧ ∀ i ∈ N: y|Out(ν(i)) ∈ ν(i)(y|In(ν(i))) }

Here, we use the notation of function restriction. For a function g: D → R and a set T ⊆ D we
denote by g|T: T → R the restriction of the function g to the domain T. The formula essentially
expresses that the output history of a data flow net is the restriction of a fixpoint1) for all the net
equations to the output channels.

2.3 Towards a Meaning of MSCs

We base our discussion on a very abstract view of MSCs. Given a network of interacting
components a MSC is understood to define a predicate Qp for each component p that is
represented by a thread in the MSC.

                                                
1) According to the fact that we consider only time-guarded I/O-functions it can be shown that there exists always
such a fixpoint; if the I/O-function is deterministic, the fixpoint is unique.



We assume that the syntactic interface of each of the components is given. This means that
for each component p the sets Ip and Op of input channels and output channels are specified as
well as their types that fix which kind of messages can be sent along the channels. Therefore we
obtain the following mathematical representation of the predicate represented by the I/O-function
Qp (we prefer a set notation over a logical notation)

Qp:   
r
I p → ℘(

r
Op)

We show in the following how to derive the I/O-function specification Qp given a set of MSCs.
The result of the formalization depends on the following additional information:

(1) Is the component p that is described by the threads of the MSCs required to be
deterministic?

(2) Is the component, after showing a pattern of behavior as specified, in a state where again
MSCs are available to describe the behavior?

(3) Are the MSCs dense prefixes, projections, or free selections of instances of interactions?

(4) Is the set of MSCs meant as a loose sample or a comprehensive set of requirements?

The precise meaning of MSCs is given in section 4. We treat there first deterministic and then
nondeterministic systems. Assuming a particular system description method (such as for
instance the process diagrams in SDL), we may ask what it means that a described system with
its components is correct with respect to a given set of MSCs.

This way we may fix the formal semantics of MSCs. However, this way the methodological
role of MSCs is not fixed. The question about the systematic usage of sets of MSCs in the
development process is still open.

3. Semantics of Message Sequence Charts

Message sequence charts describe concurrent traces also called processes ("runs") representing
instances of individual system runs. A MSC specifies properties of a network of components
that are distributed and interact by exchanging messages. A MSC describes an execution
instance of such a system. Often, MSCs are therefore considered only as means of illustrations
of representative instances of system behavior. We understand, however, in the following a set
of MSCs rather as a (possible incomplete) formal requirements specification of the components
of the system.

In the development process, MSCs are used to specify the behavior of a network of
components for instance in terms of characteristic use cases. Complex behaviors cannot easily
be specified this way. For them we need better structuring and abstraction techniques to be able
to work with sufficiently short, comprehensible sets of MSCs.

A crucial question is what it is that should be expressed by a MSC. This tells us how to
interpret a MSC and a set of MSCs as a specification.



3.1 Syntax and Structured Presentation of MSCs

In this section we introduce a structured syntactic presentation of MSCs. A MSC is a diagram
with n vertical lines, one for each component of the system, that symbolize the flow of time for
each component (time flows from the top to the bottom). These lines are called the threads.
Between the threads there are horizontal arrows representing interactions between the respective
components. These arrows point from one thread to another. Each arrow represents two
communication events (sending and receiving) with a uniquely determined thread which is its
source (called sender) and a uniquely determined target thread (called the receiver). Thus each
thread consists of a finite sequence of events for which the component associated with the event
is either its sender or its receiver. For convenience we assume that the events for each thread are
in a linear order1).
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Fig. 2 General Schematic Form of a Thread for the Component ti in a MSC Showing the Communication

Events

A MSC is called consistent, if for all its events there is a partial ordering that contains the linear
orderings of all the threads as suborderings (for a comprehensive discussion see [Alur et al.
96]). This makes sure that there are no cycles in the causality flow of the communication events
(no "causal loops").

A MSC is labeled as follows. Each thread is labeled by the identifier referring to the
component it stands for. Each communication arrow is labeled by a channel identifier and a
message. In addition, certain points of a thread may be labeled by identifiers called the control
states of the thread and by predicates referring to the attributes of the respective component.
These predicates are called (data state) assertions.

                                                
1) A component with a behaviour described by a thread may in fact be a network itself with subcomponents
operating in parallel. In this case the sequential order of the thread is understood as an interleaving of the partially
ordered events of the network.



We concentrate on the threads in a MSC each of which specifies part of the behavior of one
component. A crucial issue is the distinction of input and output for such a thread. In a thread,
we find sequences of input arrows followed by sequences of output arrows as shown in Fig. 2.
We cluster those sequences of input or output arrows into maximal subsequences. We
understand the meaning of MSCs then informally as follows:

Whenever the component gets all the input messages belonging to the input patterns up to a
point in the thread, it produces all the output message as this is indicated by the output
patterns.

This rule can be used to transform a MSC into a logical formula. In the following we define this
formula explicitly.

Given a message sequence chart of the general form as shown in Fig. 2, we observe that
every thread ti has a sequence of alternating clusters of incoming and outgoing arcs. These
clusters are combined into input and output patterns as shown in Fig. 3.

ti

i2 o2

i1 o1

M M

Fig. 3 General Form of a Thread in a MSC with Clustered Input/Output

One way to cope with a thread in a MSC is to cluster the incoming and outgoing messages into
maximal segments of input and output as shown in Fig. 3. Each segment ik contains only input
messages (ingoing arrows) and each segment ok contains only output messages (outgoing
arrows).

Let C be the set of channels for the component ti decomposed in input channels I and output
channels O where C = I ∪ O, I ∩ O = ∅. An input or output pattern can be represented by a
finite channel valuation

  
r
C *

for the channels in C which is defined as a mapping

C → (M ∪ {√})*.

Following this view, a thread provides a finite sequence of valuations ik ∈  
r
I *, ok ∈ 

r
O* for the

input channels and the output channels. Note that every arc labeled by ik may represent a
sequence of incoming messages and every arc labeled by ok may represent a sequence of
outgoing messages.



3.2 Semantics of Sets of MSCs Specifying Deterministic Systems

In this section we introduce two ways of describing the meaning of a set of MSCs representing
instances of interaction of a deterministic system. One is to associate exactly one I/O-function
with them. The other introduces a function for every pair of segments.

We represent the behavior of a deterministic system component by an I/O-function

f: 
r
I  →   

r
O

that maps input histories to output histories. The MSC of Fig. 3 specifies a behavior for the
function f which can be represented by the equation

f (i1ˆ ... ˆin) = o1ˆ ... ˆon

and the additional liveness conditions (for all k, 1 ≤ k ≤ n)

o1ˆ ... ˆok Æ f (i1ˆ ... ˆik)

This yields a liberal interpretation of threads in MSCs leading to the understanding that at least
the indicated output by a MSC is guaranteed by the component, but maybe more.

3.3 The Semantics of MSCs for Nondeterministic Systems

Our simple interpretation of MSCs by equations does not work, in fact, when specifying
nondeterministic components by sets of MSCs. In general, in this case we would get
inconsistent sets of specifying equations by the simple translation technique as introduced
above. Therefore we have to work, in the nondeterministic case, either with sets of functions or
with set valued functions.

A set of MSCs intended to specify a nondeterministic system component is interpreted by a
set valued function

f: 
r
I  → ℘(  

r
O)

For each of the MSCs of the form shown in Fig. 3 we get the specifying formulas (for all k ∈
ˆ, 1 ≤ k < n)

∃ y: o1
∧...∧ok Æ y ∧ y ∈ f (i1

∧...∧ik)

and
o1

∧...∧on ∈ f (i1
∧...∧in)

We call a function f comprehensive with respect to a set of MSCs if it fulfills these specifying
formulas. There are many functions, in general, that are comprehensive for a given set of
MSCs. In particular, the "chaotic" function f with f.x =   

r
O for all input histories x ∈ 

r
I  is

comprehensive.
 In contrast to the equations with which we work in the deterministic case this gives a much

looser interpretation of a set of MSCs. The sets of MSCs specify this way which behavior is
supposed to be possible, but they do not specify anything that restricts the set of outcomes of
the system to be constructed.

For nondeterministic systems a notion of correctness as introduced for deterministic systems
does not make much sense. If we would define:

"An I/O-function is correct if it fulfills the formulas generated from a set of MSCs."



we would call the function correct that shows a chaotic behavior (where every output is possible
for every input). This is not always what is intended by a set of MSCs. Therefore, for
nondeterministic components, a more restrictive interpretation is appropriate to be able to restrict
the behavior. This is done in the section 6 under the keyword closed world assumption.

4. Introducing Control and Data States

So far we worked with the following interpretation of MSCs:

− initial compact behavior: a MSC describes a complete prefix of the input and output actions.

Since a MSC is only a finite history to specify systems with infinite or at least unbounded
behavior, we prefer not to require that a MSC holds only for an execution sequence starting in
the initial state but rather for all execution sequences starting in particular states.

However, in general, life is not so simple. We do not want to describe by a MSC only initial
segments of a component. We rather want to describe behaviors in certain situations. For being
able to do this we introduce the notion of a control state and a local data state. We label threads
in addition with these control states and state predicates (assertions) about the local data states.

4.1 Introducing Local Data States

A data state is defined by a set of attributes and their values. An attribute is an identifier for
which a type is given. The set of attributes together with their types defines the data state space.
Every valuation of the attributes by data values defines a data state σ. Let σ, σ ' denote data
states. Given a thread we assume predicates Pi(σ) and Qi(σ, σ') on the data state as labels which
we place at the beginning and at the end of the thread and at each position between an output
arrow and an input arrow. Syntactically we write formulas of predicate logic for P(σ) and Q(σ,
σ') that contain the attributes for the data state σ as free identifiers. We get sections of threads of
the form as shown in Fig. 4.

Q(σ,  σ´)

M

P(σ)

ik ok

i1 o1

M

Fig. 4 General Form of a Thread in a MSC with Assertions



This way we get an interpretation of a thread as a set of transitions of a state machine.

4.2 Introducing Control States

We have already shown how to make use of control states in section 3.2.2. Now we discuss
the usage of control states in more detail. There is the following strategy to add control states to
MSCs. If we have a set of threads for a component, we may choose

(1) the same state identifier for the beginning and the end of each thread of the component f
in the set of MSCs.

(2) if initial prefixes of threads coincide, then we choose the same state identifiers for those
initial segments.

Another technique is to introduce the control state names explicitly by the designer into the
thread of the MSC. Then every MSC starts in a state and ends in a state. As long as the states
are all control states their meaning is simple. Every control state χ corresponds to a stream
processing function (given a data state).

In addition to the control states we deal with the data states. Given a MSC as shown in Fig.
4 labeled by an assertion P about the initial data state σ and an assertion Q about the final data
state σ´ in relation to σ as well as by the initial control state χ and the post control state χ ' we
obtain the following specifying formulas

y ∈ fσ
χ (i1ˆ...ˆik) ⇐ o1

∧...∧ok Æ y ∧ P(σ) for 1 ≤ k < n

o1ˆ...ˆonˆ fσ
χ
′
′ (x) ⊆ fσ

χ (i1ˆ...ˆinˆx) ⇐ P(σ) ∧ Q(σ, σ')

This leads to a system of specifications of the function fσ
χ .

A crucial question is the selection of the identifiers for the intermediate control states. If we
choose all these control states distinct this is probably not always what is intended. However,
we may use control identifiers freely and repeatedly in threads. By repeating a control state
identifier at several points in a set of threads we may express that we can compose certain
behaviors sequentially. This is taken care of in our translation of MSCs to predicates by the
function identifiers indexed by the control states. Introducing control states explicitly can be
understood as clustering (partitioning) the set of MSCs into sets (with the same initial and final
states) and relating these sets (by arrows pointing of one set to the other if the final state of the
first coincides with the initial state of the second).

4.3 The Universe of Unfiltered Scenarios

As a result of the logical interpretation described above we get a set of conditional formulas of
the general forms

condition(x, y) ⇒ y ∈ fσ
χ (x)

or

condition(x, y) ⇒ y = fσ
χ (x)



for each set of MSCs for each of the involved components. By choosing all kinds of
instantiations for the input history x and the output history y we get rid of the conditions and
obtain a generally infinite set of formulas of the form

y ∈ fσ
χ (x)

or

y = fσ
χ (x)

for concrete histories y ∈   
r
O and x ∈   

r
I . This set is called the unfiltered universe of interaction

patterns (similar to the Herbrand universe in logic programming) for the component f.

5. MSCs as Projections

Often distributed systems have to handle a large number of quite unrelated scenarios of
interaction. Then it is helpful not to show all messages that are exchanged in the distributed
system but to restrict the presentation shown by the MSC to those messages that are related to
the aspects of the system that should be clarified by the MSC. A typical example is the
restriction to the message for a particular subprocess (a particular business transaction). Let us
assume that we have projection functions for a stream x written in the form

xN

that restrict a stream to those elements in the message set N. Given a set of messages N for a set
of MSCs we can restrict the communication shown in the MSCs to the messages in N. We
specify then a set of MSCs by the formulas

i1
∧...∧ik Æ xN ⇒ ∃ y ∈ f (x): o1

∧...∧ok Æ yN

This allows us to talk about communication subhistories. Given a set of MSCs we may interpret
the threads of a component according the following ideas:

− projection: a MSC describes a prefix of a projection of the input and output,

− loose selection: a MSC describes a loose selection of messages.

The second case is a bit difficult to deal with. Its meaning is so vague that it is not suited as a
specification method. However, even this case can be seen as a special case of projection.

If a MSC describes a projection of messages, we may ask whether MSCs may overlap. In
this case each MSC may describe a particular aspect of a system.

Given the unfiltered universe of interaction patterns and two filter functions

ϕI:   
r
I  →   

r
I

ϕO:   
r
O →   

r
O

which formalize the projections by the restrictions used above in a more general way, we select
for each interaction pattern

y ∈ fσ
χ (x)



or

y = fσ
χ (x)

respectively a set of patterns

y' ∈ fσ
χ (x')

or

y' = fσ
χ (x')

respectively provided ϕI(x') = x and ϕO(y') = y. The set of the patterns obtained that way is
called the filtered universe of interaction patterns.

In principle, it makes also sure how to combine MSCs with filters. Given a set

{mk : k ∈ K}

of MSCs with a set Uk of unfiltered universes for each mk and the filter function ϕI
k and ϕO

k we
get a conjunction

∧ ∧ (ϕI
k(x') = x ⇒ ∀ y' ∈ f (x'): ϕO

k(y') = y)
k ∈ K (x, y) ∈ Uk

Again by instantiating the x and y in the formulas we get a universe of equations and element
formulas.

6. Closed World Assumptions

From a MSC we derive, as explained in the preceding paragraph, a set of equations of the form

y = f (x)

or in the nondeterministic case of formulas of the following form

y ∈ f (x)

This set is called the filtered universe. So far we have not restricted the behavior of a
nondeterministic component described by a set of MSCs. We obtain a more restrictive
interpretation as follows. We assume that whenever we have a thread for a component with
behavior function f that leads to a condition

y ∈ f (x)

then for the input x only the output y and the outputs that are explicitly included by other threads
for the input x are allowed. Only if no thread is included for some input x at all arbitrary output
is permitted.

6.1 Associating a Canonical Behavior with a Set of MSCs

In this section we construct the closure of a set of MSCs according to the closed world
assumption. Given a set of MSCs specifying a nondeterministic component by their threads we



associate with them a canonical behavior based on the closed world assumption as follows. An
I/O-function

f:   
r
I  → ℘(  

r
O)

connects infinite input histories with infinite output histories. A thread in a MSC only talks
about finite sections of histories. Therefore we define the meaning of a set of threads for the
function f by considering a function on finite and infinite timed stream

f*:   I
r
* → ℘(  O

r
* )

where for a set of channels C we define   C
r
*  as the set of valuations

C → (M*)* ∪ (M*)∞

We use the prefix ordering Æ as an auxiliary construct for defining the set of downward closed
subsets

DCS(  O
r
* ) = {Z ⊆   C

*
r

: Z ≠ ∅ ∧ ∀ z ∈   C
*
r

: z Æ x ∧ x ∈ Z ⇒ z ∈ Z}

The partial ordering that we use on the set DCS is simply set inclusion. Under this ordering Z =
{C‹›} is the least element where C‹› ∈ C

r
*  with (for c ∈ C) C‹›.c = ‹›.

Actually we define the function f* such that

f*: I*
r

 → DCS(  O
r
* )

If we are given a set of formulas R = {Φk: k ∈ K} where each Φk is of the form (we can get rid
of the conditions by looking at all instances of the identifiers in the conditions)

yk ∈ f (xk)

or of the form

f (xkˆx') ⊆ ykˆ f (x')

we specify the function f * as the ⊆-least time guarded function that fulfills the following
specifying formulas

yk ∈ f *(xk)

f *(xkˆx') ⊆ ykˆ f *(x')

As a result of this construction we obtain a function

f *:   I
r
* → DCS(  O

r
* )

For an input history x ∈  
r
I  (which is also in   I

r
*) each maximal output history y ∈ f*(x) that is

not in   
r
O does contain for certain channels c ∈ C sequences y.c that are not infinite.

6.2 Closures on the Canonical Behavior

The function f* constructed in the previous paragraph can be completed into an I/O-function

f:   
r
I  → ℘(  

r
O)

by adding to the maximal elements in f*(x) for x ∈   
r
I  arbitrary streams to those streams that are

finite. We define the function f with based the function f* by the following equation:



f .x = {y ∈   
r
O: ∀ k ∈ N: y k↓  ∈ f *(x) ∨

∃ k ∈ N: y k↓  ∈ f *(x) ∧ ∀ y' ∈ f *(x): y k↓  Æ y' ⇒ y k↓  = y'}

This construction is called the chaotic closure for the set of defining formulas.
According to this construction the function f is the inclusion largest function with the

following properties:

(1) f is time guarded,

(2) if there is a MSC that talks about the input x, then f(x) contains exactly those outputs
explicitly described in one of the MSCs.

(3) if for an input x we can decompose x into x'ˆx'' such that exactly for the input pattern in
x' output is specified by the MSCs we define the output for x'' as being arbitrary.

In particular, whenever for some input an input pattern is not contained in a set of MSCs, the
output can be arbitrary (chaos).

The closed world construction concludes our semantic treatment of MSCs by a translation
into a set of equations and is-element-formulas.

7. The Methodological Role of MSCs

There are many useful ways to work with MSCs in the development of interactive distributed
systems. For instance, MSCs can be used to illustrate the interaction of system components as
part of the decomposition of systems. Moreover MSCs can be used to represent system traces
as they are used in tests or software inspections. In the software development process there are
several phases in which MSCs are a helpful concept:

(1) In the early phases of requirements engineering we may use MSCs to get a first idea which
services the system should provide.

(2) In the later phases of requirements engineering sets of MSCs may be used as description
techniques as part of a formal specification.

(3) In the design phase the interaction between the system parts can be illustrated by MSCs.
This way MSCs are a key technique for the decomposition of a system. In particular,
MSCs are helpful when describing design patterns.

(4) In the implementation phase MSCs can be used as test cases. In particular, both the result
of runs of a system as well as the required behavior may be represented by test cases.

All these scenarios for the usage of MSCs can be supported by tools. In particular, for the
conception of these tools a scientific foundation of MSCs may be decisive.

In section 3 to 6 we defined a formal meaning of sets of MSCs. Strictly speaking, a set of
MSCs is considered as a formal specification of the components of a distributed system
modeled by a data flow net. In the case of a deterministic system component, a MSC describes
an instance of behavior for a component that is uniquely determined for the particular input
stimuli. In the case of deterministic components, MSCs can be directly translated into
equations. This does not hold for nondeterministic systems, however. For them the meaning of



a single MSC is much less straightforward. At first sight, a MSC only describes one way of
reaction of a component in response to a particular input pattern. There may be many more
different reactions possible. Only if we give a comprehensive set of MSCs that contains all
behaviors that should be possible we get a powerful, expressive specification technique.

From a methodological point of view, we may use a set of MSCs to describe

• an illustrative selection of system runs,

• a complete specification of all system behaviors.

A set of MSCs for the specification of the behavior of a network of components may hence be
provided in a system development with the following intentions:

(a) Loose instances: We give a loose selection of instances of runs of the system to illustrate
its behavior.

(b) Comprehensive instances: We give a comprehensive set of MSCs that expresses all the
requirements of components of the network.

These two options correspond to different ideas how to work with MSCs in the development
process. The difference between these two ideas about the role of a set of MSCs is rather
crucial. The first case may be a step in requirements engineering where we are interested in a
description of a system behavior that is as general as possible (see [Klein 98]). The second case
can be seen as a usage in the design process where a specific behavior has to be described.

One way to obtain a more precise idea of the methodological role of MSCs is to relate them
to  formal methods. Formal methods recommend formal specification and system development
steps based on refinement relations. The most basic refinement relation is property refinement.
In property refinement a system is developed by adding further properties (requirements) to an
underspecified system description as well as by adding further system parts (enriching the
signature). The basic mathematical notion of property refinement is logical implication (with
respect to the logical properties) or isomorphically set inclusion (with respect to the signatures
and the set of models). This allows us also to replace component specifications by logically
equivalent component implementations.

For our concept of a system model property refinement is very simple. A component with a
behavior described by the I/O-function

f̂ : 
r
I  → ℘(  

r
O)

is called a property refinement of a component with a behavior described be the I/O-function

f:   
r
I  → ℘(  

r
O)

if for all input streams x ∈ 
r
I  we have:

f̂ (x) ⊆ f(x)

Informally expressed, we define that the component  f̂  is a refinement of component f if for
every input history x every output history that f̂  may generate for input x is also a output
history for f on input x. In other words, f̂  fulfills all requirements that f fulfills.

At a first look, the ideas of specification and refinement and MSCs fit together very well. A
MSC describes a relation between particular input/output histories and this way is a formal
specification. There is, however, a methodological obstacle between this use of MSCs and
refinement. The refinement relation allows us to get rid of nondeterministic branches and this
way make a system more deterministic. This means that we may throw away interaction



scenarios in development steps as long as (for the same input) there are (nondeterministic)
alternatives. This is, however, not always in the spirit of MSCs as they are understood, in
practice. There the idea is to provide all runs of a system that should appear. And why should
we introduce many more scenarios if they are thrown away afterwards, anyhow.

For deterministic systems the methodological obstacle does not appear. A deterministic
system cannot be made "more deterministic". Consequently, as long as a described system is
deterministic, the interpretation of its MSCs is rather straightforward. Every scenario
corresponds to a specifying equation for the I/O-function modeling the particular component.

For nondeterministic systems and sets of scenarios including nondeterminism, there is a
conflict, however, between:

• refinement steps that allow us to get rid of nondeterministic alternatives,

• the sets of MSCs that are assumed to describe all behaviors that all should be possible.

The second idea would not allow us to throw away scenarios while the first would suggest to
get rid of certain scenarios. Actually, to understand sets of MSCs as a precise method of
specification we have to define how to deal with the two situations characterized above.

One convincing answer to this methodological obstacle is given in [Klein 98] suggesting to
understand a set of scenarios as the specification of the components that shows for input
patterns covered by scenarios exactly the behavior described by the scenarios and for the input
patterns not covered arbitrary behavior. This is formalized by our presentation under the
keyword "closed world assumption".

Another answer to the methodological obstacle is as follows. In many applications we better
distinguish between two kinds of MSCs:

• MSCs that describe the intended behavior and interaction,

• MSCs that describe unwanted behavior, modeling failure cases, that have to be tolerated but
should be avoided whenever possible.

Given such a classification for MSCs we obtain a completely different view onto a set of MSCs
with respect to refinement. Positive scenarios may be dropped in system development step only
of other positive scenarios remain for the same input pattern. Negative scenarios may be
eliminated whenever feasible. Finally we do not accept behaviors that are composed only of
patterns of negative scenarios.

8. Conclusion

We have shown that there are several sensible ways to understand and interpret sets of MSCs in
the system development process. We see this fact not as a weak but rather as a strong point of
MSCs. However, we conclude from this that MSCs should never be used without a precise
indication of the role they play in the development process and the way they should be
interpreted.

There have been several proposals to give a precise semantics to MSCs. However, most of
them understood MSCs as describing the meaning of composed systems in a global state view.
Typical examples for this approach are [Ladkin, Leue 93, 95]. There MSCs are translated into



global state machines for the composed system. This way the set of global system traces is
defined for a given MSC. Also in [Broy et al. 97] where extended MSCs are introduced a
global system trace semantics is used.

In [Klein 98] MSCs are translated into state machines describing the behavior of the
components of a system. This idea is rather close to ours.

For our approach to give meaning to MSCs the distinction between input messages and
output messages in the communication events of a MSC is essential. Distinguishing between
input and output leads to a concept of causality. Furthermore, it allows us to distinguish
between deterministic and nondeterministic sets of MSCs. Typically, for an asynchronous
component, input cannot be influenced and has to be accepted the way it is provided. An
asynchronous component does accept any input at any time. We speak therefore of the input
enabledness of components. In particular, the existence and the choice of input messages is not
within the responsibility (requirements) of a component. However, output is. This allows us to
interpret MSCs in a way where we do not only describe by an MSC very loosely what may
happen in a system but also quite strictly what must happen.
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