
Extension of SDL and MSC to Support Performance
Engineering:

A Discussion of Design Issues

Andreas Mitschele-Thiel
Universität Erlangen-Nürnberg

Email: mitsch#informatik.uni-erlangen.de

Bruno Müller-Clostermann
Universität GH Essen

Email: bmc#informatik.uni-essen.de

Abstract

Formal description techniques allow to formally reason about the functional aspects of sys-
tems under development. This allows to detect and remedy functional errors in early stages
of the development cycle. In order to also support performance engineering activities in the
early development stages, a study of the integration of performance aspects into the stan-
dardized formal description techniques SDL and MSC has been launched within the ITU-T
study group 10 in 1997. The integration of performance aspects into the standards is impor-
tant to promote the wide-spread use of performance tools. The paper reports on the results
of the study reached so far and discusses the issues involved with the integration of perfor-
mance aspects into SDL and MSC.

1 Introduction
Performance issues play a major role in the system engineering process. Nevertheless, the inte-
gration of performance aspects in the system engineering process has not been well studied. In-
stead, systems engineering and performance evaluation are often being considered as two rather
independent areas. Domenico Ferrari once coined the term ‘insularity of performance evalua-
tion’ [Fer86], even the phrase ‘esoteric cult’ is sometimes used in this context. As a result of
this, each of the two worlds has its own specialists and uses its own models, methods and tools.
Especially annoying is that different models are used to deal with different aspects of the system
under development. The major drawback of the use of disjunct models is the extra effort needed

Copyright Notice: The Copyright of this material is retained by the authors and it may not be copied without
the explicit permission of the authors. The material can be used within ITU SG 10 for discussion purposes, but may
not be distributed to other parties without the authors’ permission.

1



to keep the models consistent. The extra effort necessary to derive and maintain a separate per-
formance model in addition to the functional model is often shunned by putting off performance
issues as long as possible in the engineering process. A survey of the risks of the ‘fix-it-later’
approach is given in [Smi90].

The ‘fix-it-later’ approach is especially dangerous in the major application area of SDL. In
the telecommunication sector, product families are offered which evolve over many years and
which have to be maintained and updated for a period of 20 years or more. With such systems,
the ‘fix-it-later’ approach with respect to performance often results in a destruction of the sys-
tem architecture. In order to quickly meet performance requirements of the system at a stage
where the system is already fully implemented and integrated, solutions are selected that are not
in accordance with the system architecture (kernel bypasses, etc.). If this approach is taken for
several iterations of a product line, complexity is gradually added to the system. This typically
results in enormous cost and delays for system integration and testing. In the worst case, the
system runs completely out of control due to its enormous complexity.

A system specified with SDL may serve as a basis for verification, validation, functional sim-
ulation and animation, code generation, prototyping, and testing. Today there are SDL tools like
SDT [Tel96] and ObjectGEODE [Ver96] supporting these activities. However, the integration
of performance and time aspects into the SDL methodology and the SDL tools has not been fully
established so far.

Therefore, the usability of SDL for performance-critical applications is limited. System de-
velopers often require quantitative measures like throughput and response time to decide on de-
sign alternatives, on target system architectures, and later on for the optimization of parameters
like timer settings, or window and buffer sizes. To obtain such performance values during early
design phases, an executable model has to be constructed that reflects implementation-dependent
information like the concurrent and time consuming usage of limited resources, the choice of
data structures and algorithms, and performance properties of the target systems.

Currently, SDL and MSC do not deal with these important aspects of the system. Especially,
they do not allow for the specification of physical aspects of the system, including limited re-
sources as queues, processing time and communication times. As a consequence of this, the cur-
rent methodology does not support three important activities of the system development process,

(model-based) performance evaluation,

joint verification of functional and non-functional aspects, and

support for the implementation of Quality-of-Service (QoS) requirements of systems.

In order to support dynamic QoS requirements, the dynamic reaction of the SDL system to per-
formance figures has to be supported, i.e. to react to feedback from the underlying resources by
dynamically changing the functional behavior of the SDL system. Another related issue is the
automatic derivation of efficient and responsive systems (see [Hen97, Bra93] for a discussion).

In the paper, we concentrate on the issues involved with the integration of information needed
for a performance evaluation. In order to allow readers not familiar with SDL and MSC to profit
from the discussion, we focus on the general issues involved and refrain from going into details
of specific language constructs. The paper is a result of the discussion within the SDL and MSC
community to support and integrate performance and time aspects. In order to foster the integra-
tion of performance and time aspects into SDL and MSC, a workshop on the topic has been held

2



in conjunction with the ITU Q.6/10 (SDL) expert meeting in Erlangen, Germany, on February
17-19, 1998 [Mit98]. The paper summarizes the major issues involved in the integration of per-
formance and time aspects in the formal description techniques SDL and MSC and the results
of the discussion so far.

The important tools that integrate performance aspects into SDL are SPECS [Bue96], QUEST
and the language QSDL [Die95, Que98], EasySim-II [Ger97], DNAsty and SDLnet [Kab97],
and SPEET [Ste97]. Tools that base their performance evaluation on MSC rather than on SDL
are the DO-IT Toolbox [Mit96], the rapid prototyping project conducted at the University of
Erlangen [Mit97a], the SPEED tool [Smi97], and the tool described in [ElS98]. A survey and
classification of the approaches employed by the tools can be found in [Mit97]. The different
approaches to describe and associate the additional information needed for a performance eval-
uation to the SDL and MSC specification are described in [Mit98]. To our knowledge, SDL and
MSC are the first formal description techniques for which the tight integration with performance
aspects is pursued in such a concrete manner. In addition, we are not aware of any other design
method that supports performance engineering in a similar way.

2 Language Issues
An important prerequisite for the integrated support of performance-related activities in the soft-
ware engineering process is the identification and formal specification (implicit or explicit) of
the aspects relevant to performance. Note that performance aspects also comprise some func-
tional aspects (e.g. functional dependences within the application or the scheduling strategy of
resources).

In order to support a performance evaluation, the analysis or design model of the system
has to be supplemented with performance-relevant information. Thus, implementation-related
quantitative properties of the system have to be derived and added to the model, most notably
information describing time and resource aspects. These include performance characteristics of
hardware devices, concurrency, scheduling strategies, processing speeds, bandwidth of chan-
nels, size of buffers, timer settings, various aspects of the software architecture including the
possible degree of parallelism, and last but not least workload and traffic characterization.

2.1 Missing Information in SDL and MSC
In order to support a model-based performance evaluation, the information described in the fol-
lowing has to be associated with the formal specification in some way. An overview on the ad-
ditional information is depicted in figure 1. References that have discussed these issues in the
past are [Hec91, Hec96]. For a recent overview and tutorial information see [Mit97, Mit98].

System stimuli The system stimuli describes the load imposed on the system i.e. the different
service requests (type and intensity) issued to the system. In the performance evaluation world
this is often referred to as arrival processes, i.e. the external process that generates the service
requests arriving at the system interface. Often the workload of a system comprises a set of dif-
ferent scenarios. A scenario defines the load that is imposed on the system concurrently, i.e. the
service requests the system has to deal with at some point in time. For the different scenarios,

3



available
resources

performance sensors
(application)

(resources)
performance sensors

system
resource demands

SDL specification

stimuli

mapping

Figure 1: The additional information needed to support a performance evaluation

the number of requested services as well as its type and frequency may vary. Important parame-
ters of the system stimuli are the requested service, the interarrival times of the service requests
and their distribution. The system stimuli induce service requests, i.e. resource demands, at the
components and subcomponents of the system (see below).

Available resources The performance of a system depends on the available resources. Avail-
able (limited) resources denote the units which are available for the application, i.e. to handle the
load by serving the requests that are caused by the system stimuli. The most relevant resources
are the processors and the communication channels of the system. Further important resources
concern the available memory to hold code and data, most notably the size of buffers. Beside
the capacity and time characteristics of resources, their service strategies are of importance.

Resource demands Resource demands denote the quantitative requirements resulting from
the application or more specificly from the system stimuli that triggers service requests on the
resources of the system. Thus, resource demands specify the cost caused by the implementa-
tion (or execution) of the parts of the system on the available resources. Examples of resource
demands are the required processing times on processors and the required memory space. Note
that the resource demands depend heavily on the design and implementation of the system. Thus,
for a performance evaluation, the resource demands for the chosen implementation alternatives
have to be derived.

Mapping Concerning the optimization of the system design and implementation, the mapping
of the resource demands on the available resources is of importance. In the context of SDL, the
mapping of the SDL units (e.g. blocks, processes, process instances, simple actions, and chan-
nels) on the available resources has to be specified.

Performance metrics and sensors Performance metrics denote the performancefigures of the
system under development that are object of the performance evaluation either as part of the goal

4



function or as constraints. Examples of metrics are the response time to process a specific input
signal, the system throughput or the utilization of some resources of the system, most notably the
process input queues and the load of the processors and communication devices. Note that also a
transformation of SDL-related measures may be necessary, e.g. the derivation of the throughput
in bytes per second from the number and kind of transmitted signals.

In order to retrieve the values of the performance metrics from the evaluated system, sensors
are needed. Sensors may range from simple probes that trace the execution to complex sensors
that already provide aggregated performance figures to the outside world. In case simple probes
are used, most of the evaluation of the information is done outside of the system. In the case
of aggregated sensors, the evaluation is done within the system. This also allows to directly
reuse this information, i.e. to influence the functional behavior of the SDL system based on this
information.

Sensors may be divided in application sensors and resource sensors. Application sensors
focus on the behavioral specification of the system, i.e. the parts visible within the SDL specifi-
cation, while resource sensors monitor the underlying runtime system and the hardware.

Performance requirements The performance requirements specify the required values for
specific performance metrics, i.e. the values or the range of the values expected from the im-
plemented system. Thus, performance requirements can be considered as constraints of the per-
formance optimization process. Note that performance requirements do not necessarily have to
be defined formally for a performance evaluation. For different workload scenarios different
performance requirements are typically given. Typical types of performance requirements are
response time and throughput figures. This issue is also important when QoS requirements must
be defined and observed.

2.2 General Issues
Performance-relevant issues are not completely orthogonal to other issues of the system devel-
opment process. This is graphically shown in figure 2. For example, performance evaluation
relies on some kind of functional or behavioral specification of the system. In addition, a per-
formance evaluation requires information on the available resources which is also needed for
other purposes. For example, the specification of the available resources is an important part of
the implementation or platform description which is employed to derive the system configura-
tion and implementation. In the following, we survey the most important issues involved.

2.2.1 Flexibility, Granularity and Ease of Use

A basic performance evaluation of an SDL specification should be easy to use even for laymen
in the performance area. On the other hand, the selected approach should also support a detailed
(fine-grain) performance evaluation where needed. This raises the question of flexibility versus
ease of use. Aflexible approach may not necessarily be very easy to use. In order to support both,
flexibility and ease of use, object orientation, especially information hiding and inheritance of
defaults appears to offer a remedy.

5



formal

performance 

semantic

requirementsqueues

platform

bounded
formal

description

semantic

SDL
sensors

performance

MSC
SDL methodology

Figure 2: Issues involved with the integration of performance aspects into SDL and MSC

2.2.2 Flexibility and Reuse of the Mapping and the Available Resources

A single SDL specification may be mapped or implemented on different hardware and a cho-
sen hardware configuration may serve for the implementation of various SDL specifications. In
addition, it should be possible to assign an SDL specification (i.e. the application) on different
hardware without changing the SDL specification itself. Another issue is fault tolerance which
requires a dynamic change of the hardware configuration. In order to support these requirements,
it seems highly advisable to keep the specification of the application and the available resources
as separate as possible to support flexibility and reuse.

2.2.3 Supported Development Phases

The question of which development phases should be supported has been raised. Since SDL sup-
ports top-level design as well as detailed design, it seems that a flexible approach that supports
both fine-grain as well as a more coarse-grain performance model is most appropriate.

In order to support early performance evaluation, i.e. at a stage where a single SDL process
may represent a number of SDL processes in the implementation, a flexible mapping scheme is
important that allows to map different parts of an SDL process on different resources.

2.2.4 Supported Application Area

The typical application area of SDL are distributed systems especially telecommunication sys-
tem. Thus, performance modeling should focus on the peculiarities of these systems. This im-
plies taking special care of the performance modeling of communications. In addition, issues
concerning overload control, the dynamic reaction to overloaded resources within the SDL sys-
tem, and (soft) real-time constraints are important and have to be dealt with.

6



Another application area where SDL seems to gain ground are small embedded real-time sys-
tems. In these systems often hard real-time conditions have to be met. In addition, these systems
are often implemented on mixed hardware/software systems, i.e. systems where part of the func-
tionality is implemented by special integrated devices as ASICs or FPGAs. In this case, parts
of an SDL process may be implemented on special hardware devices. This raises the need to
model the mapping of different parts of an SDL process on different resources. However, note
that this depends on the granularity of the partitioning of the application in parts to be imple-
mented in software and in hardware. Summarizing this, support of these applications requires a
very flexible approach from the performance modeling viewpoint.

2.2.5 Limited Input Queues

Physical systems are finite, in particular limited buffer sizes or memory space are restrictions
that may influence a system’s behavior considerably. However, by definition, the input queues of
SDL processes are unlimited. Thus, the results of a validation of a system under the assumption
of unbounded queues may not be particularly useful. On the other hand, unlimited queues ease
the formal validation. This is due to the fact that the limitation of queues results in additional
actions which are not needed with unlimited queues.

The implications of introducing limited queues in SDL are far-reaching. Most important
seems the question of how to deal with buffer overflow and the implication the selected solu-
tion has on the formal semantics. Alternatives for dealing with full queues are discarding the
signal, throwing an exception, or restarting the system. Typically, the selected action depends
on the application. Thus, a flexible, user-defined approach seems to be most appropriate from
the user standpoint. However, this has serious implications on the language definition and the
formal semantics of SDL.

2.2.6 Semantics of Time

The time semantics of SDL is very vague, which is due to missing agreement on the issue within
Q.6/10. Currently, the time may or may not be advanced by an action or a transaction. A le-
gal interpretation of this is to advance the time only when all queues of the system are empty
(e.g. [Ver96]). As depicted in figure 3, this interpretation has the advantage of reducing the set
of possible traces. Thus, the complexity of the (functional) simulation and validation is reduced.
However, for a performance simulation, this interpretation is not appropriate.

From the implementational viewpoint, time is advanced be every action. This interpretation
is also conform to the time semantics of SDL. However, note that the two interpretations of the
time semantics are not equivalent, i.e. the two sets of system traces derived by the two interpre-
tations of the time semantics are not necessarily equal. This is graphically depicted in figure 4.

2.2.7 Relation of Performance Evaluation to Object Orientation in SDL 92

All approaches to performance evaluation so far do not deal with object orientation in SDL.
However, since object orientation is a basic concept in SDL, this needs further study. Most im-
portant is the study of the mutual interference of object orientation and performance modeling,
i.e. questions concerning the inheritance of performance extensions. Important in this respect is

7



interpretation

(smaller) set of possible traces(large) set of possible traces

(vague) time semantics of SDL some more precise time semantics

Figure 3: Influence of the time semantics on the set of possible traces

interpretation 1
set of possible traces

set of possible tracesinterpretation 2

(vague) time semantics of SDL

Figure 4: Difference of the system traces due to different interpretations of the time semantics
in SDL

also the inheritance of defaults of performance information, which eases the user from associat-
ing performance data with each time-consuming action in SDL.

2.2.8 Tool Support versus Language Extensions and Standardization

The question to what extent the performance evaluation is a tool issue rather than a standardiza-
tion issue has been raised. The important question in this respect is whether the additional in-
formation needed to support a performance evaluation are (1) directly associated with the SDL
specification by introducing new constructs, (2) directly associated by using extensions to cur-
rent SDL constructs, or (3) to keep the information separately and link them to the SDL specifi-
cation by the respective tools.

In the first and second case an important question is to what extent the specification of the ap-
plication (with resource demands) is interleaved with the specification of the available resources.
For example, is it allowed to place resource specifications within regular SDL blocks? Note that
this would have serious implications on the semantics of SDL. For example, it would allow to
inherit and instantiate resources with the instantiation of blocks.

In any of the discussed cases, a standardization of the specification of the additional informa-
tion needed for a performance evaluation is required in order to allow different performance tools
to work with the same language notation. Thus, standardization is important for tool vendors to
get a return on their investments and also for users to be able to apply different performance tools
to the same SDL specification.

8



2.3 Integration of Missing Performance Information in SDL and MSC
In section 2.1, we have concentrated on the kind of information that is needed to support a model-
based performance evaluation. In the following, we focus on design issues concerning the in-
tegration or association of the extra information with the SDL (or MSC) specification. This in-
cludes questions as where to put the additional information and the exact syntax as well as se-
mantics of the extra information.

2.3.1 System Stimuli

Two basic concepts exist to specify the system stimuli. QSDL [Die95] uses SDL processes (ex-
tended to model time more precisely) to describe arrival processes. PMSC [Fal97] employs a
special notation to describe system stimuli. Another approach is to have a separate workload
generator linked to the SDL specification, implemented in an arbitrary (non-standardized) lan-
guage or notation (e.g. [Ger97, Rou98]). For a standardized approach only the first two ap-
proaches seem to be appropriate. Due to its similarities with the current SDL standard, the use
of SDL processes to specify the system stimuli seems to be most appropriate. In addition, the
similarities may ease the extension of the formal semantics.

2.3.2 Available Resources

Level of detail of the resource/platform description The level of detail of the resource de-
scription is an important issue. For an early evaluation, a coarse model may be sufficient. The
known approaches range from the simple specification of delays to a precise model of the un-
derlying hardware. In [Bue96, Rou98], delays are specified from which the response times are
derived considering concurrency within a set of processes. In [Die95, Ger97], queuing models
with various service strategies and priorities are employed. A detailed emulation of the under-
lying processor hardware is used in [Ste97].

Multiple use of the resource/platform description The description of the resources or im-
plementation platform may serve two very different purposes. It is needed for a performance
evaluation as well as to specify the platform for the implementation of the SDL specification.
However, these two purposes require rather different information of the machines which may
be the motivation to keep two descriptions. For a performance evaluation, the capacity of the
resources along with their service strategy is typically sufficient, while much more information
is needed to support an implementation.

Specification of resources in standard SDL An alternative approach for the specification of
the available resources is the use of standard SDL constructs, e.g. SDL processes, amended with
special data types. This has the advantage that no changes to SDL, especially to its semantics
are needed. On the other hand, this divides the SDL specification in parts from which code is
derived and parts that are not used for the code generation. This comprises SDL processes that
implement resources as well as channels and signalroutes that transfer resource requests rather
than messages.

9



2.3.3 Resource Demands

The resource demands may be given in a generalized form, i.e. as parameters from which the
specific resource requirements can be derived. Thus, the resource demand depends on the de-
cisions concerning the mapping and the specific resources that are available. For example, the
resource demands can be given either absolutely (e.g. the delay time of a data transmission) or
relatively (e.g. the volume of the transmitted data) from which the absolute time can be derived.
In addition, the granularity of the parts for which the resource demands are specified may dif-
fer. It may vary from the coarse-grain specification of the resource demands of a set of modules
down to the fine-grain specification of the execution cost per single construct.

Level of detail of the resource demands The level of detail of the resource requests is an
important issue. Alternatives are the association of a service request to actions or complete tran-
sitions in SDL [Rou98], or to add special service requests to arbitrary points in the SDL spec-
ification [Die95, Ger98]. It has been argued that service requests should be associated to SDL
constructs, rather than introducing a new construct. In this context also the question of flexibility
versus practicability and ease of use of the approach has been raised.

Blocking versus nonblocking resource demands Typical approaches support blocking re-
source requests similar to the semantics of procedure calls known from programming languages,
i.e. the executing process is blocked until the given resource is acquired and the required service
time has passed. In [Ger98] also nonblocking requests can be issued. This may be helpful to
directly specify nonblocking resource demands, e.g. a signal output. On the other hand, non-
blocking service requests are somehow less intuitive than blocking requests.

Resource demands for communication The specification of resource demands for commu-
nication (delay) should be described in a straight-forward manner. This is currently not the case
with most of the available performance tools, which focus on the resource demands of the tran-
sitions rather than on communications. Thus, they require a refinement of a delayed channel by
an SDL process which issues service requests to the model of the communication resource.

Overhead modeling Focusing on the association of resource demands to the SDL specifica-
tion itself, a major cause of resource demands has been ignored, namely the cost involved with
the runtime system, typically comprising the SDL runtime support system and the operating sys-
tem. Measurements have shown that the overhead in executing an SDL specification (i.e. the
SDL transitions) may be much larger than the cost of the SDL transitions itself [Hen97]. Thus,
the overhead of the underlying runtime system is an important issue and should be modeled ap-
propriately.

In performance evaluation, there are (at least) two basic approaches to include overhead.
Overhead is directly added to the resource demands of the actions itself, or alternatively over-
head is modeled by an abstract overhead factor that reduces the capacity of the resource which
is available to the application. A problem may be the fact that the overhead typically depends
on the load of the runtime system itself, i.e. the number of processes it has to handle.

10



Hierarchy and defaults The association of information on the resource demands to the time
consuming actions of the SDL system may be very tedious. Thus, a mechanism to specify and
use defaults for the resource demands is desirable. Most appropriate seems a hierarchical scheme
that allows to inherit the defaults in the SDL block hierarchy. This releases the user from the
task of associating a resource demand to each action. On the other hand, this approach may not
be appropriate in early design phases, when the focus is on the system structure rather than its
behavior and where only a small number of actions is defined.

2.3.4 Mapping of Resource Demands on Available Resources

The different SDL units have to be assigned to the resources in order to study the impact of re-
source consumption and contention. Several alternatives exist. The mapping can be specified
implicitly by directly naming the resource within the resource requests. However, this consid-
erably limits flexibility. Flexibility is supported by a separate description of the mapping of the
resource requests on the available resources (e.g. [Die95, Ger98]).

2.3.5 Performance Metrics and Sensors

Performance sensors are used to specify the performance metrics monitored and measured dur-
ing the performance evaluation. QSDL provides sophisticated aggregated performance sensors
[Die98, Que98] while others rely on rather simple probes. Simple probes used in SPEET [Ste97]
or PMSC [Fal97] focus on providing an interface to output performance data.

With QSDL, aggregated performance sensors are special data types maintained by the un-
derlying system during the system simulation. The sensors can be used also to dynamically in-
fluence the functional behavior of the SDL specification based on the load figures. This allows
to dynamically adapt the system to meet QoS requirements or to control overload. A different
approach is known from the implementation of telecommunication systems. There, load sensors
are implemented by the underlying runtime system depending on the special needs of the appli-
cation. The detection of specific load situations triggers SDL signals sent to the SDL processes
in charge of dealing with the problems (e.g. see [Wir98]).

2.3.6 Performance Requirements

This is an important issue for the automatic verification of performance requirements. However,
it is not central for a typical performance evaluation.

Basic approaches to specify performance requirements are

extended MSCs [Fal97, Sch98],

temporal logics used in conjunction with performance sensors [Die98, Que98], and

the direct use of SDL to check performance requirements within the SDL specification
during the system simulation.

MSCs are especially appropriate to specify response time requirements.
The direct use of SDL to specify performance requirements seems not to be a sensible ap-

proach since the specification of performance requirements within SDL highly interferes with

11



the functional specification. This is especially true if performance requirements represent met-
rics that require the monitoring of several SDL processes. In this case, a description within SDL
requires to communicate the measured values using standard SDL communication mechanisms.

Currently, MSCs are less expressive than temporal logics. On the other hand, temporal log-
ics are not acceptable for end users. An idea is to enhance the expressiveness of MSCs and map
these enhanced MSCs internally on a temporal logic to support the formal verification of func-
tional and non-functional aspects by model checking techniques [Die98].

3 Final Remarks
Support for performance evaluation and performance engineering in general is an important is-
sue in the software engineering process. This is increasingly acknowledged by the telecommu-
nication industry and reflected by a growing demand in SDL tools that support performance en-
gineering activities. However, the integration of performance aspects into standardized descrip-
tion techniques raises a lot of questions. This is due to the fact that information relevant for a
performance evaluation is not orthogonal to information needed for other activities in the en-
gineering process. Thus, a sensitive approach for the integration of performance aspects into
design methods requires to deal with various other aspects of the system engineering process,
too. With formal description techniques as SDL and MSC, additional questions concerning the
formal semantics arise. Examples are the semantics of time and questions of how to actively
deal with limited resources.

Acknowledgements
We would like to thank all the people involved in the process of integrating performance and
time aspects into SDL and MSC. We especially thank the participants at the recent Workshop
on Performance and Time in SDL and MSC in Erlangen for their contributions and the lively
discussion. We also thank the colleagues from the ITU-T study group 10 for many discussions
on the topic.

References
[Bra93] R. Braek, O. Haugen. Engineering Real Time Systems – An object-oriented method-

ology using SDL. BCS Practitioner Series, Prentice Hall, 1993.
[Bue96] M. Bütow, M. Mestern, C. Schapiro, P.S. Kritzinger. Performance Modelling with

the Formal Specification Language SDL. Joint Int. Conf. on Formal Description
Techniques for Distributed Systems and Communication Protocols (IX) and Proto-
col Specification, Testing and Verification (XVI) (FORTE/PSTV’96), R. Gotzhein,
J. Bredereke (eds.), Chapman & Hall, 1996.

[Die95] M. Diefenbruch, E. Heck, J. Hintelmann, B. Müller-Clostermann. Performance Eval-
uation of SDL Systems Adjunct by Queuing Models. SDL ’95 with MSC in CASE
(Proc. Seventh SDL Forum), R. Braek, A. Sarma (Ed.), Elsevier, 1995.

12



[Die98] M. Diefenbruch. Functional and quantitative Verification of time- and resource-
enhanced SDL Systems with Model Checking. In [Mit98].

[ElS98] H. El-Sayed, D. Cameron, M. Woodside. Automated performance modelling from
scenarios and SDL designs of telecom systems. Proc. of Intl. Symp. on Software En-
gineering for Parallel and Distributed Systems (PDSE’98), IEEE Press, 1998.

[Fal97] N. Faltin, L. Lambert, A. Mitschele-Thiel, F. Slomka. An Annotational Extension of
Message Sequence Charts to Support Performance Engineering. Proc. of the Eighth
SDL Forum, Evry, France, Elsevier, 1997.

[Fer86] D. Ferrari. Considerations on the Insularity of Performance Evaluation. IEEE Trans.
on Softw. Eng., 12(6), 1986.

[Ger97] R. Gerlich. Tuning Development of Distributed Real-Time Systems with SDL and
MSC – Current Experience and Future Issues. Proc. of Eighth SDL Forum, Evry,
France, Elsevier, 1997.

[Ger98] R. Gerlich. EaSySim II SDL Extensions for Performance Simulation. In [Mit98].
[Hec91] E. Heck, D. Hogrefe, B. Müller-Clostermann. Hierarchical Performance Evaluation

Based on Formally Specified Communication Protocols. IEEE Trans. on Computers,
40(4), 1991.

[Hec96] E. Heck. Performance Evaluation of Formally Specified Systems – The Integration of
SDL with HIT. Doctoral Thesis, Informatik IV, Universität Dortmund, Krehl Verlag,
1996.

[Hen97] R. Henke, H. König, A. Mitschele-Thiel. Derivation of Efficient Implementations
from SDL Specifications Employing Data Referencing, Integrated Packet Framing
and Activity Threads. Proc. of the Eighth SDL Forum, Evry, France, Elsevier, 1997.

[ITU93] ITU-T. Z.100, Specification and Description Language (SDL). ITU, 1993.
[ITU93a] ITU-T. Z.100, Appendix I. ITU, SDL Methodology Guidelines. ITU, 1993.
[ITU96] ITU-T. Z.120, Message Sequence Charts (MSC). ITU, 1996.
[ITU97] ITU-T. SDL+ Methodology: Manual for the use of MSC and SDL (with ASN.1). Sup-

plement 1 to Z.100, 1997.
[Kab97] H.M. Kabutz. Analytical performance evaluation of concurrent communicating sys-

tems using SDL and stochastic Petri nets. Doctoral Thesis, Department of Computer
Science, University of Cape Town, Republic of South Africa, 1997.

[Mit96] A. Mitschele-Thiel, P. Langendörfer, R. Henke. Design and Optimization of High-
Performance Protocols with the DO-IT Toolbox. Joint Int. Conf. on Formal Descrip-
tion Techniques for Distributed Systems and Communication Protocols (IX) and Pro-
tocol Specification, Testing and Verification (XVI) (FORTE/PSTV’96), R. Gotzhein,
J. Bredereke (eds.), p. 45-60, Chapman & Hall, 1996.

[Mit97] A. Mitschele-Thiel, B. Müller-Clostermann. Performance Engineering of SDL/MSC
Systems. SDL ‘97 – Time for Testing, Tutorial Notes, (Eighth SDL Forum), A. Cav-
alli, D. Vincent (Eds.), Institut National des Telecommunications, Evry, France, 1997,
(to appear in Computer Networks and ISDN Systems, Elsevier, 1998).

[Mit97a] A. Mitschele-Thiel, F. Slomka. A Methodology for Hardware/Software Codesign of
Real-Time Systems with SDL/MSC. Intl. Workshop on Conjoint Systems Engineer-
ing (CONSYSE 97), Bad Tölz, Sept. 1997, (to appear by IT Press).

13



[Mit98] A. Mitschele-Thiel, B. Müller-Clostermann, R. Reed (Eds.). Proc. of Workshop on
Performance and Time in SDL and MSC. Report IMMD VII-1/98, University of Er-
langen, 1998.

[Ols94] A. Olsen, O. Faergemand, B. Moller-Pedersen, R. Reed, J.R.W. Smith. Systems En-
gineering Using SDL-92. North Holland, 1994.

[Que98] QUEST and QSDL Homepage. http://www.cs.uni-
essen.de/Fachgebiete/SysMod/Forschung/QUEST/. 1998.

[Ree96] R. Reed. Methodology for real time systems. Computer Networks and ISDN Systems,
28, pp 1685-1701, 1996.

[Rou98] J.L. Roux. SDL Performance Analysis with ObjectGEODE. In [Mit98].
[Rud96] E. Rudolph, P. Graubmann, J Grabowski. Tutorial on Message Sequence Charts.

Computer Networks and ISDN Systems, 28, 1629-1641, 1996.
[Sch98] I. Schieferdecker, A. Rennoch. Usage of Timed MSCs for Test Purpose Definition. In

[Mit98].
[Smi90] C.U. Smith. Performance Engineering of Software Systems. SEI Series in Software

Engineering, Addison-Wesley, 1990.
[Smi97] C.U. Smith, L.G. Williams. Performance Engineering Evaluation of Object-Oriented

Systems with SPEED. Intl. Conf. on Computer Performance Evaluation: Modelling
Techniques and Tools, Lecture Notes in Computer Science 1245, Springer Verlag,
1997.

[Ste97] M. Steppler, M. Lott. SPEET - SDL Performance Evaluation Tool. Proc. of Eighth
SDL Forum, Evry, France, Elsevier, 1997.

[Tel96] Telelogic Malmö AB: SDT 3.1 User’s Guide, SDT 3.1 Reference Manual. 1996.
[Ver96] Verilog. ObjectGEODE – Technical Documentation, 1996.
[Wir98] K. Wirth. Overload Control in GSM – Handling the Problem in the Context of SDL.

In [Mit98].

14


